	Software Release Notes v3.3
	Release (3.3)

[image: image26.emf]

Central Systems

Software Release Notes v 3.3

CONTENTS

41.
Introduction

52.
User requirements & design detail

52.1.
MCCP093 – Introduction

72.1.1.
UR1.1 / MCCP093-FD001

182.1.2.
UR2.1 / MCCP093-FD002

192.1.3.
UR2.2 / MCCP093-FD003

212.1.4.
UR2.3 / MCCP093-FD004

262.1.5.
UR2.4 / MCCP093-FD005

272.1.6.
UR2.5 / MCCP093-FD006

342.1.7.
UR2.6 / MCCP093-FD007

352.1.8.
UR2.7 / MCCP093-FD008

362.1.9.
UR2.8 / MCCP093-FD009

382.1.10.
UR2.9 / MCCP093-FD010

452.1.11.
UR3.1 / MCCP093-FD011

462.1.12.
UR4.1 / MCCP093-FD012

462.1.13.
UR4.2 / MCCP093-FD013

472.1.14.
UR4.3 / MCCP093-FD014

472.1.15.
UR4.4 / MCCP093-FD015

482.1.16.
UR4.5 / MCCP093-FD016

492.1.17.
UR4.5.2 / MCCP093-FD018

502.1.18.
UR4.5.3 / MCCP093-FD019

512.1.19.
UR4.6 / MCCP093-FD020

512.1.20.
UR4.7 / MCCP093-FD021

522.1.21.
UR4.8 / MCCP093-FD022

522.1.22.
UR5.1 / MCCP093-FD023

532.1.23.
UR5.2 / MCCP093-FD024

542.1.24.
UR5.2.1 / MCCP093-FD025

542.1.25.
UR5.3 / MCCP093-FD026

552.1.26.
UR5.3.1 / MCCP093-FD027

552.1.27.
UR5.3.2 / MCCP093-FD028

552.1.28.
UR5.3.3 / MCCP093-FD029

562.1.29.
UR5.3.4 / MCCP093-FD030

562.1.30.
UR5.3.5 / MCCP093-FD031

582.1.31.
UR6.1 / MCCP093-FD032

582.1.32.
UR6.2 / MCCP093-FD033

592.1.33.
UR6.3 / MCCP093-FD034

622.1.34.
UR6.4 / MCCP093-FD035

642.1.35.
Master Diagrams

932.2.
CMACP158 – Introduction

932.2.1.
UR1.1 / CMACP158-FD001

942.2.2.
UR1.2 / CMACP158-FD002

942.2.3.
UR1.3 / CMACP158-FD003

952.2.4.
UR1.4 / CMACP158-FD004

962.2.5.
UR2.1 / CMACP158-FD005

972.2.6.
UR3.1 / CMACP158-FD006

992.3.
Central Systems - Error Codes

1.
Introduction

This Release Note documents the technical changes that were made to Central Systems and associated components in order to incorporate the Approved Changes for Release v3.3. This is a formal document which incorporates the User Requirements (UR) and Functional Design (FD) components that may have previously been specified in Impact Assessments (IA) for each Change Proposal (CP) relevant to the specific release, in this case Release 3.3.

This document is drafted based on the user requirements in the Consolidated User Requirement Document, therefore supersedes the Impact Assessment documents, and this document can be the single point of reference for the development and testing teams or other project stakeholders.

This document has been produced as required by the Release 3.3. The document reflects the changes being made and Section 2 of this document has different sub sections for the Approved Changes that are included in this release (as per table below); each Approved Change has further sub sections for the specified user requirements and the associated design detail in order to satisfy the user requirement. When the design detail for one user requirement satisfies the user requirements for a separate UR, the reader will be provided with a document reference link, opposed to repeating the relevant text again.
	CP Reference
	Title
	Document Section

	MCCP093
	Enabling automated and appropriate registrations
	2.1

	CMACP158
	Identifying Listener Service problems
	2.2

2. User requirements & design detail

MCCP093 – Introduction
The change is being presented to address an issue which has meant that the registration of supply points cannot happen in an orderly manner. The change will address the following issues:

No rateable value exists

The change will revise text within the market code (CSD) which stops registrations taking place where no rateable value exists.

While in most cases a rateable value is available this need not always be the case and it is inappropriate for the market code to have a ‘true or false’ rule for RVs. In other words it is implicit within the CSDs that a £0 or null rateable value is incorrect in cases where either the SPID or an associated sewerage SPID has an RV based charging method. This is not the case and the documents must take cognisance of this and recognise these cases.

This change will therefore enable the market to recognise exceptions where a null RV is appropriate in the short or long-term. It will also strengthen the market by enabling appropriate monitoring of data quality to be undertaken by supporting the existing performance fines. This change will clearly show that if a null (£0RV) exists a market participant has failed to fulfil a duty by either removing inappropriate services via an operational process or making clear why a ‘null’ RV is required.

The T6.0 /6.1 transaction effective date

The current CS validation of a SPID before a SPID becomes tradeable, requires there to be a non-zero value of RV effective for the SPID on the connection date if either the SPID (or associated sewerage SPID) has an RV based service element. The T6 transaction is often submitted after the submission of a connection date but does not have the ability to set a retrospective effective date. Therefore such SPIDs cannot easily be moved to tradeable in an automated manner as they currently fail validation.

The CS should ensure that any RVs submitted by an LP by a T006.0/T006.1 transaction prior to a SPID becoming tradable are effective from the connection date, irrespective of whether the T006.0/T006.1 transaction is submitted before or after the relevant T007.0/T007.1 transaction flow.

Furthermore consideration needs to be given to the case where a water SPID is added to a sewerage SPID, or vice versa to ensure compatibility of data.

The T7.0 / 7.1 transaction processing

The final element of this change is ensuring that the T7.0 / 7.1 transactions are processed to enable SPIDs to become tradeable.

The CSDs require that the T007.0/T007.1 transactions are the final transactions in the process which connect a SPID and make it tradable. Currently, SW has no visibility of whether LPs have submitted the necessary transactions; and prior to the September 2011 release were ‘de-facto’ usually able to submit a successful T007.0 transaction without the LP submitting their necessary transactions (including those for RV and for customer names). Two related changes are therefore proposed:

· That validation checking before a T007.0/T007.1 transaction is accepted should be limited to data which should be submitted by SW prior to the submission of the T007.0/T007.1; and

· That the system should formally recognise that the final transactions to make a SPID tradable should also include the relevant LP transactions.

Detailed consideration during an impact assessment also needs to be given to:

· The precise transactions which will trigger the test for SPID tradability; and

· Acceptable status for the associated SPID when a SPID is being added to an existing associated SPID

Where for example a Water SPID is being added to an existing Sewerage SPID (or vice-versa), the Sewerage SPID will have an existing history of RV. If the Water SPID RV is backdated, then the Water SPID RV could be:

· Consistent with the existing Sewerage SPID RV; or

· Inconsistent

It is proposed that an inconsistent status will be allowable as it is for the LP to provide the correct data. However, to guard against incorrect data being provided a warning message will be provided. This will be akin to an error message which flags that the data is inconsistent and some remedial action is required.

This is preferred to a ‘rejection’ error message, although that route could be adopted in a similar way to a meter read, where a ‘re-read’ can be forced into the system.

Summary

In summary the change will address two critical issues:

· It will enable SPIDs to be registered where no rateable value exists

· It will enable SPIDs to be registered

· by enabling the system to recognise the correct ordering of transactions; or

· providing validation which suits the requirements of market participants and the market
UR1.1 / MCCP093-FD001

User & Functional Design Requirements

	UR Ref
	User Requirement
	FD Ref
	Functional Design Requirement

	UR1.1

	Error code granularity should be made finer. For example particular, IsChargeable() and CanConnect() are (current) functions which return Booleans. This means that when callers of these functions send T009 error messages when either of these functions return false, error codes can only reflect that the function returned false (e.g. AJ: data required...), as opposed to a specific reason why the function returned false. For example, IsChargeable() can return false because the supply point (a) has no service elements and is not in the metering programme; (b) there is no RV on the connection date; or (c) a few other reasons.
The error codes in T009 messages generated because those functions (or their replacements---cf. URs 4.x) return false should be more specific.
We will also take the opportunity, when looking at the transactions types listed in of UR4.5 / MCCP093-FD016, to clarify the existing validation (as modified by other URs) of such transactions. By “clarify” we mean we do not wish to change overall whether a message passes or fails validation (except where stated by other URs), but that we wish to make the validation simpler, or more consistent with the other transactions, or otherwise improve error codes.

For example, we wish to modify the description of the “EJ” error code from “SPID status must be connected” to “Supply Point must not be disconnected or deregistered”; this more accurately reflects use of this validation check up till now.
As another example, we wish to send out AC or AA error codes if the spid is invalid or it is the wrong LP for the spid, respectively, when validating the T032.0. “DX” (“SPID does not exist or it is a Sewerage SPID that is paired to a Water SPID”) is currently used in such cases, but is a coarser error message, and indeed misleading in the latter case.

As another example, we wish the T012.1 to send out a T009 error message (analogous to other validation failures) when the LP is the wrong LP for the supply point; this is in particular as opposed to failing silently, which is current behaviour.
	MCCP093-FD001

	See the detailed design below.

Detailed Design

Existing Error Codes R3.2

The following table shows the R3.2 returned Error codes (in relation to flows T001.0, T003.0, T006.0, T006.1, T012.0, T012.1, T007.0, T007.1).
Please be aware that this table does not include any new error codes as proposed in any other sections of this R3.3 Design document. (E.g. the new error codes for the T007.0/T007.1 flows) that will be incorporated as part of this release.

	Flow Type
	Order
	Validation Description
	Validation Method Name
	Error Code
	Error Text

	T001.0
	1
	Is Sender Wholesaler
	CheckSenderIsWholesaler
	DL
	Sender must be wholesaler.

	
	2
	Exception retrieving LP from DB
	HasValidLicence
	AC
	SPID does not exist in the Central Systems

	
	3
	Sender LP has a valid license
	HasValidLicence
	AA
	Sender must be a valid Licensed Provider

	
	4
	Exception during the process of creating SPID
	CreateSPIDAndNotify
	--
	No Notification, exception logged in Nlogdatabase

	
	5
	If the SPID is supplied in the flow, and could not be found in DB
	CreateSPIDAndNotify
	AC
	SPID does not exist in the Central Systems

	
	6
	If (OrgID is not supplied and Connection Type = GS) AND (could not get LP for GapSite from DB)
	CreateSPIDAndNotify
	EG
	There are no Licensed Providers available for Gap Site allocation

	
	7
	If (a Supply Point Core was found in DB and Service Category is SW) AND (the existing derived WS SPID exists and is not rejected)
	CreateSPIDAndNotify
	DD
	Service category already exists for this connection

	
	8
	If (a Supply Point Core was found in DB and Service Category is SW) AND (the existing derived SW SPID exists and is not rejected)
	CreateSPIDAndNotify
	DD
	Service category already exists for this connection

	
	9
	If (a Supply Point Core was found in DB and could not determine the Service Category
	CreateSPIDAndNotify
	AC
	SPID does not exist in the Central Systems

	T003.0
	1
	Exception during loading SPID from DB
	CheckSPIDExists
	AC
	SPID does not exist in the Central Systems

	
	2
	If no D2001_SPID was supplied
	CheckSPIDExists
	AB
	SPID must be supplied in the transaction

	
	3
	If could not find SPID in DB
	CheckSPIDExists
	AC
	SPID does not exist in the Central Systems

	
	4
	If SPID state = Tradeable
	CheckSPIDExists
	AF
	SPID status must be New

	
	5
	If SPID state is not New nor Tradeable
	CheckSPIDExists
	AF
	SPID status must be New

	
	6
	Exception retrieving SPID from DB
	CheckValidLP
	AA
	Sender must be a valid Licensed Provider

	
	7
	if SPID is Partial/New AND ActiveRegistration.LP is NOT the Sender
	CheckValidLP
	AA
	Sender must be a valid Licensed Provider

	
	
	If SPID is NOT Partial/New and does NOT have Active Registration and the Registered SPID LP is Not the Sender
	CheckValidLP
	AA
	Sender must be a valid Licensed Provider

	
	
	if SPID is NOT Partial/New and has Active Registration and (ActiveRegistration LP is not the Sender) and the SPID has a registered LP that is not the sender
	CheckValidLP
	AA
	Sender must be a valid Licensed Provider

	
	8
	Exception during the process of Updating SPID
	CreateNewRegAndUpdateSPID
	--
	No Notification, exception logged in Nlogdatabase

	
	9
	If D2001_SPID could not be found in DB
	CreateNewRegAndUpdateSPID
	--
	No Notification, exception logged in Nlogdatabase

	
	10
	D1005_SenderOrgId could not be found in DB
	CreateNewRegAndUpdateSPID
	--
	No Notification, exception logged in Nlogdatabase

	
	11
	If the SPID is in a state that allows it to be connected, but does not have a customer associated with it
	CanConnect
	DW
	Customer Name is not present

	
	12
	If the SPID is in a state that allows it to be connected, and has an Active Registration
	CanConnect
	DW
	Customer Name is not present

	T006.0
	1
	Exception during Validating data
	ValidateData
	AC
	SPID does not exist in the Central Systems

	
	2
	If SPID could not be loaded from DB
	ValidateData
	AC
	SPID does not exist in the Central Systems

	
	3
	If SPID is Partial and is not Water
	ValidateData
	DC
	Transaction must be for a WS SPID

	
	4
	If the SPID is Tradeable
	ValidateData
	GA
	SPID status must be Partial

	
	5
	If the SPID is not Partial nor Tradeable
	ValidateData
	GA
	SPID status must be Partial

	
	6
	If LP is not Valid or Could not determine if LP is Valid or Exception encountered when trying to determine if LP is Valid
	CheckValidLP
	AA
	Sender must be a valid Licensed Provider

	
	7
	NOTE: No Exception Handling when trying to Update SPID
	UpdateSPID
	--
	No Notification / Exception Handling

	
	8
	If the SPID is in a state that allows it to be connected, but does not have a customer associated with it
	CanConnect
	DW
	Customer Name is not present

	
	9
	If the SPID is in a state that allows it to be connected, and has an Active Registration
	CanConnect
	DW
	Customer Name is not present

	T006.1
	1
	Exception during Validating data
	ValidateData
	AC
	SPID does not exist in the Central Systems

	
	2
	If SPID could not be loaded from DB
	ValidateData
	AC
	SPID does not exist in the Central Systems

	
	3
	If SPID is Tradeable
	ValidateData
	GA
	SPID status must be Partial

	
	4
	If SPID is not Partial nor Tradeable
	ValidateData
	GA
	SPID status must be Partial

	
	5
	If SPID is Partial and is Not Sewerage
	ValidateData
	ED
	Transaction must be for a SS SPID

	
	6
	If SPID is Partial and is Sewerage, then if has an Associated SPID & the Associated SPID has status that is NOT Disconnected/Deregistered & Associated Supply Point's Update Status is either Both or SpidDataOnly
	ValidateData
	AG
	SS SPID data cannot overwrite WS SPID Data

	
	7
	If LP is not Valid or Could not determine if LP is Valid or Exception encountered when trying to determine if LP is Valid
	CheckValidLP
	AA
	Sender must be a valid Licensed Provider

	
	8
	If the SPID Creation date is NOT before/earlier than NOW OR it was NOT modified before/earlier than NOW
	UpdateSPID
	DF
	Effective From date predates previous change

	T032.0
	1
	Exception during SpidExists Check
	SpidExists
	--
	No Notification, exception logged in Nlogdatabase

	
	2
	if SPID can not be found/loaded from DB
	SpidExists
	DX
	SPID does not exist or it is a Sewerage SPID that is paired to a Water SPID

	
	3
	If (SPID status is Not Tradeable OR Sender LP is not registered LP) AND (SPID status is NOT partial OR SPID has Active Registration OR SPID's Active Registration LP is NOT sender LP)
	SpidExists
	DX
	SPID does not exist or it is a Sewerage SPID that is paired to a Water SPID

	
	4
	If SPID belongs to Sewerage AND it does have an associated Water SPID
	isPairedSewerageSPID
	DX
	SPID does not exist or it is a Sewerage SPID that is paired to a Water SPID

	
	5
	If the Customer Name is not Valid
	isCustomerNameValid
	DV
	Invalid Customer Name

	
	6
	Exception when updating Customer Name
	UpdateCustomerName
	--
	No Notification, exception logged in Nlogdatabase

	
	7
	If the SPID is in a state that allows it to be connected, but does not have a customer associated with it
	CanConnect
	DW
	Customer Name is not present

	
	8
	If the SPID is in a state that allows it to be connected, and has an Active Registration
	CanConnect
	DW
	Customer Name is not present

	T012.0
	1
	If SPID could not be loaded/found from DB
	SenderIsValidLP
	AC
	SPID does not exist in the Central Systems

	
	2
	If SPID is either New, Partial, Rejected, Disconnected, Deregistered
	SenderIsValidLP
	AE
	SPID status must be Tradeable

	
	3
	If SPID has no LP or Sender is not registered LP
	SenderIsValidLP
	AA
	Sender must be a valid Licensed Provider

	
	4
	Exception when updating SPID
	UpdateSPID
	--
	No Notification, exception logged in Nlogdatabase

	
	5
	If SPID could not be loaded/found from DB
	UpdateSPID
	AC
	SPID does not exist in the Central Systems

	
	6
	if SPID is Sewerage and has Associated SuppyPoint
	UpdateSPID
	AG
	SS SPID data cannot overwrite WS SPID Data

	T012.1
	1
	If SPID could not be loaded/found from DB
	SenderIsValidLP
	AC
	SPID does not exist in the Central Systems

	
	2
	If SPID is either New, Partial, Rejected, Disconnected, Deregistered
	SenderIsValidLP
	AE
	SPID status must be Tradeable

	
	3
	If SPID has no LP or Sender is not registered LP
	SenderIsValidLP
	--
	Fail Validation - Do Nothing / No Notification

	
	4
	Exception when checking update is valid
	UpdateIsValid
	AC
	SPID does not exist in the Central Systems

	
	5
	If SPID could not be loaded/found from DB
	UpdateIsValid
	AB
	SPID must be supplied in the transaction

	
	6
	If SPID is Disconnected or Deregistered
	UpdateIsValid
	EJ
	SPID status must be connected.

	
	7
	If SPID is Sewerage AND has Associated SupplyPoint that is not Disconnected nor Deregistered AND (the Rateable Value OR Vacancy was specified in flow)
	UpdateIsValid
	AG
	SS SPID data cannot overwrite WS SPID Data

	
	8
	If the D4006_EFD is after Today's date
	UpdateServiceElement
	DK
	

	
	9
	If SPID could not be loaded/found from DB
	UpdateServiceElement
	AB
	SPID must be supplied in the transaction

	
	10
	If last modified date is after D4006_EFD OR the Creation Date is after the D4006_EFD
	UpdateServiceElement
	DF
	Effective From date predates previous change

	
	11
	If SPID is WS AND any Outside Taps, Troughs or Drinking bowls exist AND Farm or Croft as NA is specified in the message.
	UpdateServiceElement
	AO
	Taps/Troughs must be Farm or Croft

	
	12
	If SPID is WS and If Outside Taps is specified in flow, and the Message OR the SupplyPoint has FarmCroft as NA
	UpdateServiceElement
	AO
	Taps/Troughs must be Farm or Croft

	
	13
	If SPID is WS If Troughs is specified in flow, and the Message OR the SupplyPoint has FarmCorft as NA
	UpdateServiceElement
	AO
	Taps/Troughs must be Farm or Croft

	T007.0 / T007.1
	1
	If SPID could not be loaded/found from DB
	CheckMandatorySupplyPointElements
	AC
	SPID does not exist in the Central Systems

	
	2
	If D2013_ConnectionDate is after Today's Date
	CheckMandatorySupplyPointElements
	AI
	Confirmed Connection Date must be in the past (upon receipt)

	
	3
	If SPID is Water and Sender is Not Wholesaler
	CheckMandatorySupplyPointElements
	DL
	Sender must be wholesaler.

	
	4
	If SPID is Sewerage AND (has ActiveRegistration) AND (ActiveRegistration LP is not Sender)
	CheckMandatorySupplyPointElements
	AW
	Sender must be a Licensed Provider with an Active Registration

	
	5
	If SPID is Sewerage AND (has an Associated Supply Point that is Partial)
	CheckMandatorySupplyPointElements
	DH
	Cannot complete connection of sewerage service before the related water service

	
	6
	If D2001_SPID is Tradeable
	AcceptConnectionMessage
	GD
	The WS SPID Status must be new or partial, the SS SPID Status must be partial or tradeable

	
	7
	If SPID is Water AND (the Supply Point Historical View ~MeteringProgramme flag is set to false OR does not have an Active Registration OR the Registration Type of that Active Registration is New) AND the SPID is Not Chargeable on the connection date
	AcceptConnectionMessage
	AJ
	Data required to complete New SPID process has not been received i.e. no charegable SEs exist/ an RV is required

	
	8
	If SPID is Water and has an associated SupplyPoint that is Not Tradeable AND (the Supply Point Historical View ~MeteringProgramme flag is set to false OR does not have an Active Registration OR the Registration Type of that Active Registration is New) AND (The Associated Supply Point is NOT Chargeable on the Connection Date)
	AcceptConnectionMessage
	AJ
	Data required to complete New SPID process has not been received i.e. no charegable SEs exist/ an RV is required

	
	9
	If SPID is Sewerage and state is New
	AcceptConnectionMessage
	GD
	The WS SPID Status must be new or partial, the SS SPID Status must be partial or tradeable

	
	10
	If SPID is Sewerage and has associated Supply Point and the status of Associate Supply Point is NOT tradeable
	AcceptConnectionMessage
	DH
	Cannot complete connection of sewerage service before the related water service

	
	11
	If SPID is Sewerage and If could not find/load Customer for SPID from DB
	AcceptConnectionMessage
	DW
	Customer Name is not present

	
	12
	If SPID is Sewerage and If Customer found but the SPID is Not Chargeable on Connection Date
	AcceptConnectionMessage
	AJ
	Data required to complete New SPID process has not been received i.e. no charegable SEs exist/ an RV is required

	
	13
	If the SPID is in a state that allows it to be connected, but does not have a customer associated with it
	CanConnect
	DW
	Customer Name is not present

	
	14
	If the SPID is in a state that allows it to be connected, and has an Active Registration
	CanConnect
	DW
	Customer Name is not present

Requested Error Code Changes

Error Code EJ – Change of description text
EJ is used as an error code for T012.0 and T012.1 transactions. The current error description is “SPID status must be connected”. The CMA have requested [initially via email (20/04/2012), though the CMA later tweaked the wording to be as shortly follows] to change the description. The description should be updated to “Supply Point must not be disconnected or deregistered”.
In addition to the proposed usage of the error code in the T012.0 - LPMiscSPIDUpdateLogic (section 2.1.10.2.1.1) and the T012.1 - LPServiceElementUpdateLogic (section 2.1.10.2.1.2). The error code is also used in the following Listener Workflows, and so they too require having their DocSteps updated.

· MeterSwapNotificationLogic.cs

· NewDischargePointLogic.cs

· TEMeterAssociationLogic.cs
New Error code (GV) to replace AE in the T012.0/T012.1 validation

AE (“spid status must be tradable”) is similarly used in the T012.0 and T012.1 transactions, as the next validation step. The CMA have requested via email (20/04/2012) that based upon the revised validation, “Supply Point must not be pre-Tradeable” would be a better description.
A new error code [GV: Supply Point must not be Pre-Tradeable] will be added to the system and used instead of AE in the two flows. Please see T012.0 - LPMiscSPIDUpdateLogic (section 2.1.10.2.1.1) and the T012.1 - LPServiceElementUpdateLogic (section 2.1.10.2.1.2) diagrams for the implementation of the new error code.

Error code Change in T032.0 - CheckSPIDExists

The T032’s CheckSPIDExists validates both that the SPID exists and also that the LP is valid. The CMA have specified (via email 20/04/2012) that the DX error code is misleading when the LP is invalid. “Changing only the behaviour when the LP is invalid, can we please use the existing code AA (Sender must be a valid Licensed Provider)”
The T032.0 flow will now return Error Code AA (T009.0 to LP) if CheckSPIDExists returned false because the LP is wrong. Additionally, it has been agreed with the CMA that AC should be returned if the SPID is invalid (N.B. this spid-invalid check [“AC”] remains before the LP-invalid [“AA”] check). Please refer to the diagram for T032.0 Flow (section 2.1.35.7) for the implementation of the return codes.
New Error Codes for T007.0/T007.1 – Accept Connection Message

The CMA have requested via email (20/04/2012) to allocate new error codes for the 5 error messages that are returned when the validation fails in the AcceptConnectionMessages method for the T007.0/T007.1 flows. For the implementation of these new error codes, please refer to the AcceptionConnectionMessages diagram in section 2.1.35.8
The new error codes will be:

	Error Code
	Error Text

	GW
	Supply Point must be pre-Tradeable

	GX
	Connect the sewerage Supply Point via the water SP, as the water is pre-Tradeable

	GY
	Water Supply Point is not (potentially) chargeable on given connection date

	GZ
	Sewerage Supply Point is not (potentially) chargeable on given connection date

UR2.1 / MCCP093-FD002
SupplyPointInfo (SPI) records should be created and updated in such a manner, so that whether a T006.0 or T006.1 transaction is received before or after a proposed SPID connection date, the updates provided by the T006.0 or T006.1 transaction are effective on the connection date. This will be achieved, in particular, as follows:

User & Functional Design Requirements

	UR Ref
	User Requirement
	FD Ref
	Functional Design Requirement

	UR2.1

	When a SPID is created, the default SupplyPointInfo Record should be written with the effectiveFrom date of ‘1980-01-01’ and NOT as per the current behaviour with an effectiveFrom date of the transaction date.

	MCCP093-FD002

	Update [New Connection] – DocStep S8.1.4 to highlight that the default SPI record was created with effectiveFrom date of ‘1980-01-01’

Detailed Design

The [New SPID Request Logic – Create SPID and Notify] creates a new SPID with status = NEW and CreationDate = DateTime.Now.
When the Status is set, the SelectOrCreate() method in the HistoryManager is called and creates a Historical Record where the EffectiveFrom = HistoricalViewDate.
To satisfy this User Requirement, we need to set the HistoricalViewDate = 01/01/1980 before we set the Status to New and call SaveOrUpdate in the SupplyPoint CMA.Workflows.NewSPIDRequestLogic - CreateSPIDAndNotify(TransactionHeaderType transactionHeader, NewSPIDRequestType newSPIDRequest)
1. ///<DocStep ID="S8.1.4" ParentID="New Connection">
2. ///Set the Supply Point's Status to New, Creation Date to Now and time and Active Registration to the one created.
3. ///The Default SupplyPointInfo record is set to 01/01/1980
4. /// </DocStep>
5. //Set SPID Status = N
6. sp.HistoricalViewDate = new DateTime(1980, 01, 01);
7. sp.Status = SupplyPointStatus.New;
8. sp.CreationDate = DateTime.Now;
9. sp.ActiveRegistration = r;
10. ///<DocStep ID="S8.1.5" ParentID="New Connection">
11. ///Save the Supply Point to the Database.
12. ///</DocStep>
13. spDao.SaveOrUpdate(sp)
UR2.2 / MCCP093-FD003
User & Functional Design Requirements

	UR Ref
	User Requirement
	FD Ref
	Functional Design Requirement

	UR2.2

	It is understood that the current behaviour when the initial SPI records are created is also to create a record with a NULL effectiveFrom date. It is not necessary to change this behaviour.
	MCCP093-FD003

	This is current functionality - No Change Required, see detailed design below for a further explanation.

Detailed Design

Currently all initial history data that is inserted into the history tables in the system, gets added with one NULL EFD and one with a NON-NULL EFD.
For example in the creation of a new SupplyPoint and when the status is set to NEW. SelectOrCreate() is triggered in BridgeAll.Common.Collections.HistoryManager which clones the NULL EFD record into a new history item and sets the latter’s EFD to the input date (in this case it is the SPI.historicalViewDate)

To stop the creation of NULL records, the cloning of the records should be stopped and instead the NULL record should be over-written with the respective EFD of the input date. If the CMA wish to stop creating NULL EFD records when a History item is first created, then it is a recommended that a separate Change Proposal is raised as the change will have an effect on all objects that use the HistoryManager (i.e. have a history list) such as SupplyPoints, Meters, etc. and as a result such a change could impact all associated flows.
For reference, the associated code is pasted below:

1. public T SelectOrCreate()
2. {
3. return SelectOrCreate(this.historicalViewDate);
4. }
5.
6. public T SelectOrCreate(DateTime? date)
7. {
8.
9. T item = Select(date);
10. if (!date.HasValue || A_equ_B(item.EffectiveFrom, date))
11. {
12. return item;
13. }
14. else //not quite equal so we must clone one.
15. {
16. T aNewT = (T)item.Clone();
17. aNewT.EffectiveFrom = date;
18. this.history.Add(aNewT);
19. return aNewT;
20. }
21. throw new EmptyHistoryException();
22. }
UR2.3 / MCCP093-FD004
User & Functional Design Requirements

	UR Ref
	User Requirement
	FD Ref
	Functional Design Requirement

	UR2.3

	When a new Sewerage SPID is created, it should always inherit the SPI history from any associated Water SPID in respect of the following fields and only the following fields:

· vacant

· rateableValue

· sicCode

· custClassification

· metering programme (aka transitional arrangements)

· SGES

Note – for information these items chosen to be copied across on the basis that either:

· they are included in the T006.1 transaction which cannot be sent to a Sewerage SPID with an associated Water SPID; and

· The T012.1 transaction is set up to copy such values across from the Water SPID to the Sewerage SPID

· A T029.x transaction is set up to copy such values across from the Water SPID to the Sewerage SPID
	MCCP093-FD004

	The respective DocSteps will be updated accordingly in line with the user requirements. See the detailed design section below for further details.

Detailed Design

Sewerage Supply Points currently inherit one SPI record (dependant on the input date) from their Associated Water Supply Points by calling OverwriteFromWaterSPID – CMA.Domain.Model.SewerageSupplyPoint

Existing Code for OverwriteFromWaterSPID:

1. /// <summary>
2. /// Will take data from the AssociatedSupplyPoint and overwrite this Sewe
3. /// </summary>
4. /// <returns></returns>
5. public virtual bool OverwriteFromWaterSPID()
6. {
7. return this.OverwriteFromWaterSPID(DateTime.Now.Date);
8. }
9.
10. /// <summary>
11. /// Overloaded OverwriteFromWaterSPID()
12. /// </summary>
13. /// <param name="EffectiveFrom">The effectiveFrom date</param>
14. /// <returns>True is active and not disconnected, else false.</returns>
15. public virtual bool OverwriteFromWaterSPID(DateTime EffectiveFrom)
16. {
17. if (this.AssociatedSupplyPoint != null && this.AssociatedSupplyPoint.Status != SupplyPointStatus.Disconnected)
18. {
19. WaterSupplyPoint wsp = (WaterSupplyPoint)this.AssociatedSupplyPoint;
20. this.HistoricalViewDate = EffectiveFrom;
21. wsp.HistoricalViewDate = EffectiveFrom;
22.
23. this.HistoricalView.SettlementExempt_29e = wsp.HistoricalView.SettlementExempt_29e;
24. this.HistoricalView.CustomerClassification = wsp.HistoricalView.CustomerClassification;
25. this.HistoricalView.LargeVolumeAgreement = wsp.HistoricalView.LargeVolumeAgreement;
26. this.HistoricalView.SEESFlag = wsp.HistoricalView.SEESFlag;
27. this.HistoricalView.RateableValue = wsp.HistoricalView.RateableValue;
28. this.HistoricalView.Vacant = wsp.HistoricalView.Vacant;
29. this.HistoricalView.MeteringProgramme = wsp.HistoricalView.MeteringProgramme;
30. this.HistoricalView.SicCode = wsp.HistoricalView.SicCode;
31. return true;
32. }
33. else
34. return false;
35. }
OverwriteFromWaterSPID() is called only from the NewSPIDRequestLogic.cs, and here the SW SPID inherits the WS SPID’s history for the current Date.

Whereas OverwriteFromWaterSPID(DateTime EffectiveFrom) is called from the following:

· LPServiceElementUpdateLogic.cs (T012.1) – using the D4006_EffectiveFrom Date

· LPSewerageSPIDUpdateLogic.cs (T006.1) – using the Current Date (this call will be removed in R3.3 – see section 2.1.7)
· LPWaterSPIDUpdateLogic.cs (T006.0) – using the Current Date ((this call will be removed in R3.3 – see section 2.1.6)

· WholesalerSpecArrangementsUpdateLogic.cs (T029.0, T029.1)– using D4006_EffectiveFrom Date

Requirement (1): Changes to the existing OverwriteFromWaterSPID

Changes are required to OverwriteFromWaterSPID(DateTime EffectiveFrom) as requested by the CMA during the discussion of the design requirements (17/04/2012), and as later revised by the CMA in this document on 2012-04-24.
1. OverwriteFromWaterSPID should additionally validate the SupplyPointStatus is not Deregistered before making changes.
2. Do not update the SettlementExempt_29e and the LargeVolumeAgreement properties of the SupplyPoint in OverwriteFromWaterSPID
3. Correctly update the summary tag of the method to reflect what it actually does.
New Code for OverwriteFromWaterSPID: (SewerageSupplyPoint class)
1. /// <summary>
2. /// Will Overwrite the Water SPI record with EFD = Date.Now to the sewerage SPID
3. /// </summary>
4. /// <returns></returns>
5. public virtual bool OverwriteFromWaterSPID()
6. {
7. return this.OverwriteFromWaterSPID(DateTime.Now.Date);
8. }
9.
10. /// <summary>
11. /// Will Overwrite the Water SPI record with EFD = Input Date to the sewerage SPID
12. /// </summary>
13. /// <param name="EffectiveFrom">The effectiveFrom date</param>
14. /// <returns>True is active and not disconnected, else false.</returns>
15. public virtual bool OverwriteFromWaterSPID(DateTime EffectiveFrom)
16. {
17. if (this.AssociatedSupplyPoint != null && this.AssociatedSupplyPoint.Status != SupplyPointStatus.Disconnected && this.AssociatedSupplyPoint.Status != SupplyPointStatus.Deregistered)
18. {
19. WaterSupplyPoint wsp = (WaterSupplyPoint)this.AssociatedSupplyPoint;
20. this.HistoricalViewDate = EffectiveFrom;
21. wsp.HistoricalViewDate = EffectiveFrom;
22.
23. this.HistoricalView.CustomerClassification = wsp.HistoricalView.CustomerClassification;
24. this.HistoricalView.SEESFlag = wsp.HistoricalView.SEESFlag;
25. this.HistoricalView.RateableValue = wsp.HistoricalView.RateableValue;
26. this.HistoricalView.Vacant = wsp.HistoricalView.Vacant;
27. this.HistoricalView.MeteringProgramme = wsp.HistoricalView.MeteringProgramme;
28. this.HistoricalView.SicCode = wsp.HistoricalView.SicCode;
29. return true;
30. }
31. else
32. return false;
33. }
Requirement (2): Inherit the Water SPID’s history starting from a given input date

A new Sewerage Supply Point method will be created – name InheritAssociatedWaterHistory that will require an input date.
1. /// <summary>
2. /// Inherit the History of the Associated Water Supply Point where AssociatedWater.SupplyPointInfo.EFD >= Starting Date
3. /// </summary>
4. /// <param name="startingDate">Starting Date</param>
5. public virtual void InheritAssociatedWaterHistory(DateTime fromDate)
6. {
7. if ((WaterSupplyPoint)this.AssociatedSupplyPoint != null)
8. {
9. WaterSupplyPoint wsp = (WaterSupplyPoint)this.AssociatedSupplyPoint;
10.
11. //For each AssociatedWater.SupplyPointInfo where EFD >= Starting Date
12. foreach (SupplyPointInfo waterSPI in wsp.History.Where
13. (x => x.EffectiveFrom.HasValue
14. && x.EffectiveFrom >= fromDate)
15.)
16. {
17. // CreateOrUpdate the Sewerage SPI with the following column values of the waterSPI record
18. // (1) Customer Classification

19. // (2) SEES Flag

20. // (3) Rateable Value

21. // (4) Vacant

22. // (5) Metering Programme

23. // (6) SIC Code
24. }
25.
26. }
27. }
To satisfy the User requirement, in NewSPIDRequestLogic: instead of calling OverwriteWaterSPID(), we now call InheritAssociatedWaterHistory (new datetime(1980,01,01)).

As a reminder, currently OverwriteWaterSPID() is called when
1. The core (D2009_SWConnectionRef) is found in the database, and the T001.0 is for a Sewerage Service (New Sewerage) that has an associatedWaterSPID
2. The core (D2009_SWConnectionRef) is new/not found, and the T001.0 is for a Sewerage Service (New Sewerage) that has an associatedWaterSPID

Both calls will be replaced with the new method.
UR2.4 / MCCP093-FD005
User & Functional Design Requirements

	UR Ref
	User Requirement
	FD Ref
	Functional Design Requirement

	UR2.4

	T006.0 transactions should only be accepted for Water SPIDs which are Partial. Otherwise reject with an appropriate error message

	MCCP093-FD005

	This is current functionality - No Change Required.
Please see the Detailed Design diagram for the returned validation codes for the T006.0 (Section 2.1.35.5)

Detailed Design

Current functionality states (LPWaterSPIDUpdateLogic.cs) – ValidateData:

· If D2001_SPID could not be loaded from Database or is not found in Database, then ReturnCode = AC

· If SPID is Tradeable, then ReturnCode = GA

· If SPID is not Tradeable nor Partial, then ReturnCode = GA

· If SPID is Partial and not a Water SPID, then return DC

· If SPID is Partial and a Water SPID but the LP is not Valid, then return AA

· If SPID is Partial and a Water SPID (with Valid LP), then flow Data is valid – proceed with Updating the SPID
For more details about the T006.0 flow Validation check diagrams in Section 2.1.35.5
UR2.5 / MCCP093-FD006
User & Functional Design Requirements

	UR Ref
	User Requirement
	FD Ref
	Functional Design Requirement

	UR2.5

	When a T006.0 transaction is accepted for a Partial Water SPID,:
· the T006.0 should both (a) update the SPI record with the 1980-01-01 effectiveFrom date, and (b) propagate the change forwards through SPI for the SPID

(For information, such SPI records could be written by the T029.1 transaction).

· A new SPI record with an effectiveFrom date of the transaction date should NOT be written to the Water SPID

· (now do the following actions per the psuedocode:)
	MCCP093-FD006

	Update [Provide WS SPID Data] (see the detailed design below) update the S4 and sub category DocSteps for the revised logic.
The OverwriteFromWaterSPID call in the T006.0 will be removed, as it is now replaced with the propagation.

See T006.0 diagram on Section 2.1.35.5

	If the Water SPID has an associated Sewerage SPID, then:

{

 If the Sewerage SPID is New, Partial or Rejected, then:

 {

 The T006.0 should:

 (a) update the sewerage SPI record with the 1980-01-01

 effectiveFrom date, and

 (b) propagate the change forwards through SPI for the

 sewerage SPID

 (For information, such SPI

 records could be written by the T029.1 transaction).
 A new SPI record with an effectiveFrom date of the

 transaction date should NOT be written to the Sewerage SPID

 }

 Else (If the Sewerage SPID is in any other state):

 {

 the Sewerage SPID SPI history should be updated by:

 (i) inserting, if necessary, a SPI record with the

 SPI.effectiveFrom date being the transaction date
 of the T006.0, with the record containing the values

 from the previous record (by SPI.effectiveFrom); and

 then always

 (ii) updating the Sewerage SPID’s SPI record(s) where the

 SPI.effectiveFrom date is >= the transaction date,

 with the information carried on the T006.0

 transaction

 }

}

Detailed Design

Requirement (1): The T006.0 should both (a) update the SPI record with the 1980-01-01 effectiveFrom date.

CMA.Workflows.LPWaterSPIDUpdateLogic - public void UpdateSPID(TransactionHeaderType transactionHeader, T0060_LPWaterSPIDUpdateType waterSPIDUpdateType)
Original Code:

1. ///<DocStep ID="S4" ParentID="Provide WS SPID Data">
2. ///Set the Supply Point's Historical View Date to Now.
3. ///</DocStep>
4. wsp.HistoricalViewDate = DateTime.Now;
New Code:

1. ///<DocStep ID="S4" ParentID="Provide WS SPID Data">
2. ///Set the Supply Point's Historical View Date to 01/01/1980.
3. ///</DocStep>
4. wsp.HistoricalViewDate = new DateTime(1980,01,01);
Requirement(2): propagate the change forwards through SPI for the SPID

Here we will only propagate forward the SPI columns that get updated by the T006.0 if they were provided in the T006.0 flow. These columns are:

· Customer Classification
· SIC Code

· Rateable Value

New LPSPIDUpdate class that contains PropagateHistoryInfo
1. using System;
2. using System.Collections.Generic;
3. using System.Linq;
4. using CMA.Domain.Interfaces;
5.
6. namespace CMA.Domain.Model
7. {
8. public class LPSPIDUpdate
9. {
10. /// <summary>
11. /// Propagate (Overwrite) the Historical Info of the SupplyPoint foward
12. /// using the T006 values (if provided) where [Starting Date] =< SPI.EFD
13. /// </summary>
14. /// <param name="supplyPoint">Supply Point</param>
15. /// <param name="fromDate">Starting Date</param>
16. /// <param name="customerClassification">T006.0/1 CustomerClassification value</param>
17. /// <param name="rateableValue">T006.0/1 Rateable value</param>
18. /// <param name="sicCode">T006.0/1 SIC Code</param>
19. public void PropagateHistoryInfo(
20. SupplyPoint supplyPoint,
21. DateTime fromDate,
22. CustomerClassificationType? customerClassification,
23. decimal? rateableValue,
24. string? sicCode
25.)
26. {
27. if (supplyPoint.History != null) //If we have a History for the SPID
28. {
29. //Update the Customer Classification/RV/Sic Code Only if they were provided in the T006.0/1 flow
30. foreach (SupplyPointInfo sp in supplyPoint.History.Where
31. (x => x.EffectiveFrom.HasValue
32. && x.EffectiveFrom >= fromDate)
33.)
34.)
35. {
36. sp.CustomerClassification = (customerClassification.HasValue ?
37. customerClassification.Value : sp.CustomerClassification);
38. sp.RateableValue = (rateableValue.HasValue ? rateableValue.Value : sp.RateableValue);
39. sp.SicCode = (sicCode.HasValue ? sicCode.Value : sp.SicCode);
40.
41. }
42. }
43. }
44. }
45. }
Changes to LPWaterSPIDUpdateLogic class – CMA.Workflows
Original Code T006.0 (Without Propagate): CMA.Workflows.LPWaterSPIDUpdateLogic.cs - public void UpdateSPID(TransactionHeaderType transactionHeader, T0060_LPWaterSPIDUpdateType waterSPIDUpdateType)
1. ///<DocStep ID="S9" ParentID="Provide WS SPID Data">
2. ///Save the Supply Point to the Database.
3. ///</DocStep>
4. spDao.SaveOrUpdate(wsp);
New Code T006.0 with Propagate
1. ///<DocStep ID="S9" ParentID="Provide WS SPID Data">
2. ///Propagate the History Info from 1980 up to the current date
3. ///then Save the Supply Point to the Database.
4. ///</DocStep>
5.
6. PropagateHistoryInfo(
7. wsp,
8. new DateTime(1980, 01, 01),
9. waterSPIDUpdateType.D2005_CustomerClassification,
10. waterSPIDUpdateType.D2011_RateableValue,
11. waterSPIDUpdateType.D2008_SICCode
12.);
13.
14. spDao.SaveOrUpdate(wsp);
Requirement (3): Pseudo Code translation:
Original Code:

1. ///<DocStep ID="S12" ParentID="Provide WS SPID Data">
2. ///If the Supply Point has an Associated Sewerage Supply Point:
3. ///</DocStep>
4. if (wsp.AssociatedSupplyPoint != null)
5. {
6. SewerageSupplyPoint ssp = wsp.AssociatedSupplyPoint as SewerageSupplyPoint;
7. //copy these changes over to the sewerage spid.
8. ///<DocStep ID="S12.1" ParentID="Provide WS SPID Data">
9. ///Overwrite the Associated Sewerage Supply Point details with the Supply Point's details updated from the Message.
10. ///</DocStep>
11. ssp.OverwriteFromWaterSPID(DateTime.Now);
12. ///<DocStep ID="S12.2" ParentID="Provide WS SPID Data">
13. ///Save the Associated Sewerage Supply Point to the database.
14. ///</DocStep>
15. spDao.SaveOrUpdate(ssp);
16.
17. }
New Code:

This will incorporate a new Supply Point property called isPreTradeable, which returns true if the SupplyPoint.Status is New, Partial, or Rejected.

1. ///<DocStep ID="S12" ParentID="Provide WS SPID Data">
2. ///If the Supply Point has an Associated Sewerage Supply Point:
3. ///</DocStep>
4. if (wsp.AssociatedSupplyPoint != null)
5. {
6. SewerageSupplyPoint ssp = wsp.AssociatedSupplyPoint as SewerageSupplyPoint;
7.
8. ///<DocStep ID="S12.1" ParentID="Provide WS SPID Data">
9. ///If the Sewerage SPID is New,Partial, or Rejected (IsPreTradeable) then:
10. ///</DocStep>
11. if (ssp.IsPreTradeable)
12. {
13. ///<DocStep ID="S12.1.1" ParentID="Provide WS SPID Data">
14. ///Propagate the T006.0/T006.1 change forward through SPID for the Sewerage SPID starting at 01/01/1980
15. ///</DocStep>
16. PropagateHistoryInfo(
17. ssp,
18. new DateTime(1980, 01, 01),
19. waterSPIDUpdateType.D2005_CustomerClassification,
20. waterSPIDUpdateType.D2011_RateableValue,
21. waterSPIDUpdateType.D2008_SICCode
22.);
23.
24.
25. }
26. ///<DocStep ID="S12.2" ParentID="Provide WS SPID Data">
27. ///If the Sewerage SPID is in any other state
28. ///</DocStep>
29. else
30. {
31. ///<DocStep ID="S12.2.1" ParentID="Provide WS SPID Data">
32. ///Propagate the T006.0/T006.1 change forward through SPID for the Sewerage SPID starting at TransactionDate
33. ///</DocStep>
34. PropagateHistoryInfo(
35. ssp,
36. transactionHeader.D1007_TransactionTimestamp,
37. waterSPIDUpdateType.D2005_CustomerClassification,
38. waterSPIDUpdateType.D2011_RateableValue,
39. waterSPIDUpdateType.D2008_SICCode
40.);
41.
42. }
43. ///<DocStep ID="S12.3" ParentID="Provide WS SPID Data">
44. ///Save the Associated Sewerage Supply Point to the database.
45. ///</DocStep>
46. spDao.SaveOrUpdate(ssp);
47. }
Also see T006.0 diagram on Section 2.1.35.5
UR2.6 / MCCP093-FD007
User & Functional Design Requirements

	UR Ref
	User Requirement
	FD Ref
	Functional Design Requirement

	UR2.6

	T006.1 transactions should only be accepted for Sewerage SPIDs which are Partial, and for which either:

· There is NO associated Water SPID; or

· There is an associated Water SPID and the associated Water SPID is either in the state of PDISC or DREG
	MCCP093-FD007

	Existing functionality.

The OverwriteFromWaterSPID call when the return code is AG will be removed in R3.3 (per UR2.7). See Section 2.1.35.6 for flow diagram.

Detailed Design

Current functionality states (LPSewerageSPIDUpdateLogic.cs) – ValidateData:

· If D2001_SPID could not be loaded from Database or is not found in Database, then ReturnCode = AC

· If SPID is Tradeable, then ReturnCode = GA

· If SPID is not Tradeable nor Partial, then ReturnCode = GA

· If SPID is Partial and not a Sewerage SPID, then return ED

· If SPID is Partial and a Sewerage SPID, then

· If we have an associated WS SPID AND the associated WS SPID is NOT Disconnected and NOT Deregistered

· Then returnCode = AG

· AND OverwritefromWaterSPID(Datetime.Now)

· Else the T006.1 is accepted

The OverwriteFromWaterSPID call when the return code is AG will be removed in R3.3. See Section 2.1.35.6 for more details.

UR2.7 / MCCP093-FD008

User & Functional Design Requirements

	UR Ref
	User Requirement
	FD Ref
	Functional Design Requirement

	UR2.7

	If the conditions above are not satisfied, reject the T006.1 with an appropriate error message. There should separate error messages for the two separate conditions

· Sewerage SPID is not Partial; and

· Sewerage SPID is Partial, but there is an associated Water SPID which is not in the correct state

The existing code attempts to overwrite sewerage data from water data when the AG error code is returned (though we have been told this might not actually have any effect due to the way the “ORM” is used). Given that other URs set out new rules for inheriting and copying data from water to sewerage, we explicitly wish to remove the code which does the existing “overwrite if AG error”.
	MCCP093-FD008

	Existing functionality.
If the SPID is not partial then we return error Code GA, if the SPID is partial but there is an associated Water SPID which is not in the desired state then we return error Code AG.

See Section 2.1.35.6 which contains a Flow Diagram representing the return codes.
MCCP093-FD007 provides that the existing OverwriteFromWaterSPID call, when the return code is AG, will be removed in R3.3

UR2.8 / MCCP093-FD009

User & Functional Design Requirements

	UR Ref
	User Requirement
	FD Ref
	Functional Design Requirement

	UR2.8

	When a T006.1 transaction is accepted for a Sewerage SPID,

· the T006.1 should both (a) update the SPI record with the 1980-01-01 effectiveFrom date and (b) propagate the change forwards through SPI for the SPID

(For information, such SPI records could be written by the T029.1 transaction).

· A new SPI record with an effectiveFrom date of the transaction date should NOT be written to the Sewerage SPID

The T006.1’s UpdateSPID() method is currently called once all validation of the transaction (apart from one exception, which follows) has been performed (and passed). The exception is that UpdateSPID() itself has a validation check for the “DF” error code. Of note, this “DF” error code cannot actually be triggered in practiceever be triggered. With this in mind, and noting that noting that “DF” (“Effective From date predates previous change”) is not a desired validation check given the intention of this UR2, we explicitly wish to abolish this “DF” check.
	MCCP093-FD009

	· See detailed design below.
· The check in UpdateSPID that will return DF [if Supply Point's Creation date is before or earlier than Now, and it has no Last Modified date or the Last Modified Date is before or earlier than today] will be removed. DocSteps will be updated accordingly.
· See Section 2.1.35.6 for Flow Diagram

Detailed Design

CMA.Workflows.LPSewerageSPIDUpdateLogic - public void UpdateSPID(TransactionHeaderType transactionHeader, T0061_LPSewerageSPIDUpdateType sewerageSPIDUpdateType)
Original Code:

1. ///<DocStep ID="S4.1" ParentID="Provide SS SPID Data">
2. ///Set the Historical View Date of the Supply Point to Now.
3. ///</DocStep>
4. // get a new timeline based collection
5. ssp.HistoricalViewDate = DateTime.Now;
…..
1. ///<DocStep ID="S4.6" ParentID="Provide SS SPID Data">
2. ///Save the Supply Point to the Database.
3. ///</DocStep>
4. spDao.SaveOrUpdate(ssp);
New Code:

1. ///<DocStep ID="S4.1" ParentID="Provide SS SPID Data">
2. ///Set the Historical View Date of the Supply Point to 01/01/1980.
3. ///</DocStep>
4. // get a new timeline based collection
5. ssp.HistoricalViewDate = new DateTime(1980, 01, 01);
….

1. ///<DocStep ID="S4.6" ParentID="Provide SS SPID Data">
2. ///Propagate the History Info from 1980 up to the current date
3. ///Save the Supply Point to the Database.
4. ///</DocStep>
5. PropagateHistoryInfo(
6. ssp,
7. new DateTime(1980, 01, 01),
8. sewerageSPIDUpdateType.D2005_CustomerClassification,
9. sewerageSPIDUpdateType.D2011_RateableValue,
10. sewerageSPIDUpdateType.D2008_SICCode
11.);
12. spDao.SaveOrUpdate(ssp);
See Section 2.1.35.6 for Flow Diagram
UR2.9 / MCCP093-FD010

User & Functional Design Requirements

	UR Ref
	User Requirement
	FD Ref
	Functional Design Requirement

	UR2.9

	T012.0 and T012.1 transactions should be rejected for SPIDs which are New, Partial, Rejected, Disconnected, or Deregistered.
	MCCP093-FD010

	See Detailed Design below

Detailed Design

T012.0 - LPMiscSPIDUpdateLogic

This is the existing logic for the validation of the data for the T012.0

T012.0 – LPMiscSPIDUpdateLogic.cs: CMA.Workflows.LPMiscSPIDUpdateLogic : internal bool SenderIsValidLP(TransactionHeaderType TransactionHeader, T0120_MiscSPIDUpdateType MiscSPIDUpdate)
· If SPID cannot be loaded from Database, then return code AC
· if SPID status is either New, or Partial, or Disconnected, or Deregistered, then return code AE (SPID must be Tradeable)
· if Could not load LP from Database, then return code AA

· if SPID LP found/loaded from Database and the LP is not the T012.0 sender then return code AA (sender must be a Valid Licensed Provider).

Recommended Solution:

(1) Validation takes places in the SenderIsValidLP method although there are other checks in addition to the LP Sender Check, as a result and to make the method name correctly reflect the steps within and in line with the naming consistency of other similar flows, we propose to change the name of this method to ValidateData()

Old Name:

1. internal bool SenderIsValidLP(TransactionHeaderType TransactionHeader, T0120_MiscSPIDUpdateType MiscSPIDUpdate)
2. { … }
New Name:
1. internal bool ValidateData(TransactionHeaderType TransactionHeader, T0120_MiscSPIDUpdateType MiscSPIDUpdate)
2. { … }
(2) The new proposed Validation Logic for the T012.0 will be as follows:

[image: image1.emf]ValidateData

Is the Supply Point Null

Finish

Yes

Is the Supply Point Status:

·

New

·

Partial

·

Rejected

(IsPreTradeable)

No

Finish

Is the SP LP NULL or is the

SP LP not the sender of the

T012.0

Finish

Yes

Start

Start

T009.0 [AC]

Issued to LP

T009.0 [AC]

Issued to LP

T009.0 [AA]

Issued to LP

T009.0 [AA]

Issued to LP

T012.0 Message Processing – Proposed Flow Validation R3.3

NO (SenderIsValid = true)

Call UpdateSPID

Is the D2001_SPID

Disconnected or

Deregistered

Finish

YES

T009.0 [EJ]

Issued to LP

T009.0 [EJ]

Issued to LP

No

Fulfills UR 2.9

No

Yes

T009.0

[GV – Supply Point must not be PreTradeable]

Issued to LP

T009.0

[GV – Supply Point must not be PreTradeable]

Issued to LP

T012.1 - LPServiceElementUpdateLogic

This is the existing logic for the data validation of the T012.1 transaction:
1. T012.1 – LPServiceElementUpdateLogic.cs: CMA.Workflows.LPServiceElementUpdateLogic : internal bool SenderIsValidLP(TransactionHeaderType TransactionHeader, T0121_ServiceElementUpdateType ServiceElementUpdate)
· If SPID cannot be loaded from Database, then return code AC (SPID does not exist in the Central Systems)
· if SPID status is either New, or Partial, or Disconnected, or Deregistered, then return code AE (SPID must be tradeable)
· if Could not load LP from Database, then Do Nothing

· if SPID LP found/loaded from Database and the LP is not the T012.0 sender then Do Nothing (no return code or notification flow).

2. If the above validation passes then the code calls: T012.1 – LPServiceElementUpdateLogic.cs: CMA.Workflows.LPServiceElementUpdateLogic internal bool UpdateIsValid(TransactionHeaderType TransactionHeader, T0121_ServiceElementUpdateType ServiceElementUpdate)
· If SPID cannot be loaded from Database, then return code AB (SPID must be supplied in the Transaction)

· If SPID status is Disconnected or Deregistered then return code EJ (SPID must be connected)

· If SPID is a Water Supply Point then proceed with updating the data

· If SPID is a Sewerage Supply Point

· If the SPID has an associated Water Supply Point and the associated Water Supply Point is NOT Disconnected or Deregistered

· If either the RateableValue or the Vacancy is specified in the T012.1 then return code AG
· Else proceed with updating the data

· Else proceed with updating the data

[image: image2.emf]Start

Start

SenderIsValidLP

Is the Supply Point Null

Finish

Yes

Is the Supply Point Status:

·

New

·

Partial

·

Disconnected

·

Deregistered

No

Finish

Yes

No

Is the SP LP NULL or is the

SP LP not the sender of the

T012.1

Finish

DO NOTHING

Start

Start

T009.0 [AC]

Issued to LP

T009.0 [AC]

Issued to LP

T009.0 [AE]

Issued to LP

T009.0 [AE]

Issued to LP

UpdateIsValid

Is the Supply Point Null

Finish

Yes

Is the Supply Point Status:

·

Disconnected

·

Deregistered

No

Finish

Yes

No

Start

Start

T009.0 [AB]

Issued to LP

T009.0 [AB]

Issued to LP

T009.0 [EJ]

Issued to LP

T009.0 [EJ]

Issued to LP

Try to find the SPID in the Database by

calling GetByID(D2001_SPID)

CATCH ERROR

T009.0 [AC]

Issued to LP

T009.0 [AC]

Issued to LP

Finish

Is the Supply Point a

Sewerage SPID

Yes

No

UpdateIsValid = TRUE

Does the Supply Point has

an associated SPID

Yes

Is the Associated SPID

Status:

·

Disconnected

·

Deregistered

NO

NO

YES

Does the flow have a

specified D2011_RV OR

D2015_Vacant

Yes

Finish

T009.0 [AG]

Issued to LP

T009.0 [AG]

Issued to LP

NO

SenderIsValidLP = TRUE

T012.1 Message Processing – Existing Flow Validation

(Never Reached)

(Never Reached)

PROCEED WITH SERVICE ELEMENT UPDATE

(Call UpdateServiceElement)

Recommended Solution:

(3) Merge the code of the two validation methods SenderIsValidLP and UpdateIsValid in one T012.1 Validation method that will contain all the under-lying checks without any contradiction.
New Method Name:

3. internal bool ValidateData(TransactionHeaderType TransactionHeader, T0120_MiscSPIDUpdateType MiscSPIDUpdate)
4. { … }
(4) The new Proposed Validation Logic for the T012.1 will be as follows:

[image: image3.emf]ValidateData

Is the D2001_SPID

specified?

Finish

NO

Has the D2001_SPID been

succesfully loaded / Found

in the Database

YES

Finish

NO

YES

Is the SP LP NULL or is the

SP LP not the sender of the

T012.0

Start

Start

T009.0 [AB]

Issued to LP

T009.0 [AB]

Issued to LP

T009.0 [AC]

Issued to LP

T009.0 [AC]

Issued to LP

Finish

YES

T009.0 [AA]

Issued to LP

T009.0 [AA]

Issued to LP

Is the D2001_SPID

Disconnected or

Deregistered

Finish

YES

T009.0 [EJ]

Issued to LP

T009.0 [EJ]

Issued to LP

NO

Is the D2001_SPID New,

Partial, or Rejected

(IsPreTradeable)

Finish

NO

Is the Rateable Value or

Vacancy specified in the

T012.1 flow

Finish

T009.0 [AG]

Issued to LP

T009.0 [AG]

Issued to LP

NO

NO

UpdateIsValid = TRUE

D2001_SPID is a Seweage

SPID and has an Associated

Water SPID

YES

YES

NO

Is the Associated Water

SPID Disconnected or

Deregistered

YES

NO

T012.1 Message Processing – Proposed Flow Validation R3.3

Call UpdateServiceElement

Fulfills UR 2.9

YES

T009.0

[GV – Supply Point must not be PreTradeable]

Issued to LP

T009.0

[GV – Supply Point must not be PreTradeable]

Issued to LP

UR3.1 / MCCP093-FD011

SupplyPointInfo (SPI) records for existing SPIDs which are New, Partial or Rejected need to be cleansed, so that such SPIDs can be treated in the same way as new SPIDs which will subsequently be created with an SPI record with an effectiveFrom date of 1980-01-01. This will be a one off operation at the time the software release is deployed.

User & Functional Design Requirements

	UR Ref
	User Requirement
	FD Ref
	Functional Design Requirement

	UR3.1

	For all SPIDs which are New, Partial or Rejected, establish the most recent set of values for the SPI record.

Identify their respective sets of SupplyPointInfo records (excluding the NULL EFD) SPID record, and

Starting with the most recent SPI record:

· Propagate backwards in time the fields on the SPI record which are carried on the T006; T006.1 (ie the

· Customer Classification

· SIC Code

· Rateable Value

· Having then found and updated the oldest of the SPI records, duplicate this record – except give it a 1980-01-01 EffectiveFrom date

	MCCP093-FD011

	See Detailed Design

Detailed Design

A Data-Cleanse Script will be provided as part of the release to satisfy this requirement. The Script will perform the following:
1. Create an Audit table to log all changes made to the SupplyPointInfo table as part of this UR script.

2. Create an Audit trigger on the SupplyPointInfo table to add any affected data on INSERT, DELETE, or UPDATE to the Audit table.
3. Find All the Supply Points that are New, Partial, or Rejected from the SupplyPoints table. These are the SPIDs whose latest SPI record is either New,Partial, or rejected.
4. Identify their respective sets of SupplyPointInfo records (excluding the NULL EFD) SPID record.
5. Consider the most recent (based on EFD) SPI record for each SPID: Note the following column values (Customer Classification, SIC Code, Rateable Value) of this SPI record

6. Update all other existing SPI records per corresponding SPID with the respective column values in the above point.

7. Duplicate the earliest non-Null EFD SPI record per SPID, and set the new (duplicate) record’s EFD to 01/01/1980.

8. Remove the Audit trigger that was created above on the SupplyPointInfo table.
UR4.1 / MCCP093-FD012

Tradability Testing and making Tradable

User & Functional Design Requirements

	UR Ref
	User Requirement
	FD Ref
	Functional Design Requirement

	UR4.1

	Before a SPID is made Tradable, validation (for a single SPID) is currently carried out by the misnamed “CanConnect” method. Rename this method to “CanMakeTradable” (Update all callers of the function as well, through read on through the rest of4.x);

	MCCP093-FD012

	Please refer to the Diagram for CanMakeTradeable in section 2.1.35.3.1.1 which fulfils this UR.

UR4.2 / MCCP093-FD013

User & Functional Design Requirements

	UR Ref
	User Requirement
	FD Ref
	Functional Design Requirement

	UR4.2

	SPIDs are made Tradable by the misnamed “ConnectSPID” method. Rename this method to “MakeTradable” (and ditto re renaming callers);
	MCCP093-FD013

	Please refer to the Diagram for MakeTradeable in section 2.1.35.3.1.2 which fulfils this UR.

UR4.3 / MCCP093-FD014

User & Functional Design Requirements

	UR Ref
	User Requirement
	FD Ref
	Functional Design Requirement

	UR4.3

	Remove the logic in the CanMakeTradable [previously known as CanConnect] method which currently issues a ‘DW’ error code if there is no Customer name present. For clarity, the check for the existence of the Customer name (which influences the return value) shall still occur, but no DW error code should be issued.
	MCCP093-FD014

	Please refer to the Diagram for CanMakeTradeable in section 2.1.35.3.1.1 which fulfils this UR.

UR4.4 / MCCP093-FD015

User & Functional Design Requirements

	UR Ref
	User Requirement
	FD Ref
	Functional Design Requirement

	UR4.4

	The logic to test the tradability of a SPID at the end of the T007.0/T007.1 process [see UpdateSupplyPoint()] is currently (using the new terminology):

· If the SPID CanMakeTradable
· If the SPID is Water and has an associated Supply Point with a status that does not equal Tradable

· If the associated SPID CanMakeTradable

· MakeTradable both the SPID and the associated SPID

· Else MakeTradable the SPID

Correct this to the following; we shall call the following, for the purposes of this UR, the “Uniform Tradability test” or similar
· If the SPID CanMakeTradable
· If the SPID is Water and has an associated Supply Point with a status that is New, Partial or Rejected

· If the associated SPID CanMakeTradable

· MakeTradable both the SPID and the associated SPID

· Else MakeTradable the SPID

	MCCP093-FD015

	Please refer to the Diagram for T007.0 / T007.1 in section 2.1.35.8 which fulfils this UR.

UR4.5 / MCCP093-FD016

User & Functional Design Requirements

	UR Ref
	User Requirement
	FD Ref
	Functional Design Requirement

	UR4.5

	Tradability Testing in accordance with the above uniform specification (UR4.4 / MCCP093-FD015) should be carried out as the final stage of processing, following both the

· successful submission (ie not an error code); and

· the necessary updating of the SPID (and where appropriate, associated SPID) messages:

for any of the following messages:

· T003.0

· T007.0

· T007.1

· T006.0

· T006.1

· T032.0

	MCCP093-FD016

	See the appropriate detailed design section which explains how the tradeability test will be used by the specified workflows.
· T003.0 Flow - section 2.1.35.4
· T007.0 / T007.1 - section 2.1.35.8
· T006.0 Flow – section 2.1.35.5
· T006.1 Flow - section 2.1.35.6
· T032.0 Flow – section 2.1.35.7

User & Functional Design Requirements

	UR Ref
	User Requirement
	FD Ref
	Functional Design Requirement

	UR4.5.1

	This Uniform Tradability testing should be implemented with as much code reuse as possible, ideally by calling a common function.

	MCCP093-FD017

	The shared methods that will be used to incorporate this functionality have been detailed in section 2.1.35
There is no further functional design to add in relation to this user requirement.

UR4.5.2 / MCCP093-FD018

User & Functional Design Requirements

	UR Ref
	User Requirement
	FD Ref
	Functional Design Requirement

	UR4.5.2

	This Uniform Tradability testing is in place of (and not in addition to) existing similar functionality [e.g. existing users of CanMakeTradable() and MakeTradable()] for these transaction types.

Notes: It is not clear with the current T006.0 message processing that the updating of the sewerage SPID is carried out before the tradability test. If not, the T006.0 processing needs to be brought in line with the specification;

There is currently no tradability testing following the T006.1 submission.

As with the T007 flows– the tradability test for all the flows need to be consistent with the above in respect of the associated SupplyPoint .
	MCCP093-FD018

	The shared methods that will be used to incorporate this functionality have been detailed in section 2.1.35
The proposed steps for the T006.0 and T006.1 (incorporating the tradability functions) have been detailed in sections 2.1.35.5 and 2.1.35.6 respectively.
There is no further functional design to add in relation to this user requirement.

UR4.5.3 / MCCP093-FD019

User & Functional Design Requirements

	UR Ref
	User Requirement
	FD Ref
	Functional Design Requirement

	UR4.5.3

	There is a slight special casing required. When the transaction type is a T003.0 we shall first use the following algorithm to determine the SPID to use in the “Uniform Tradability test”

· if the SPID which has been partially registered by the flow is a Sewerage SPID with an associated Water SPID which is New, Partial or Rejected,

· then the SPID to use for the uniform tradability test is that of the associated Water SPID (instead of the Sewerage SPID)

· else the SPID to use for the Uniform Tradability test is the SPID we just used to evaluate the “if” condition.

	MCCP093-FD019

	This specific scenario has been incorporated into the T003 flow diagrams; see section 2.1.35.4 for the design solution.

UR4.6 / MCCP093-FD020

User & Functional Design Requirements

	UR Ref
	User Requirement
	FD Ref
	Functional Design Requirement

	UR4.6

	The MakeTradable method should no longer issue T007.2 messages to the LP (instead the T007.2 messages will only be generated as part of a response to a successful T007.0 or T007.1 transaction – see UR6.1 / MCCP093-FD032)
	MCCP093-FD020

	The MakeTradeable function will not issue T007.2 notification messages, see section 2.1.35.3.1.2
T007.2 notification messages will only be issued in response to a T007.0/7.1 message when the UpdateSupplyPoint method is called. See section 2.1.35.8 for details.

UR4.7 / MCCP093-FD021

User & Functional Design Requirements

	UR Ref
	User Requirement
	FD Ref
	Functional Design Requirement

	UR4.7

	When a SPID is successfully set to Tradable, a new message notification T035.0_TradabilityNotification should be issued to the LP. The T035 should contain the spid and the Supply Point’s connection date as its (only) fields. Where both a Water SPID and an associated Sewerage SPID are made Tradable, T035.0 messages should be sent in respect of each SPID.
	MCCP093-FD021

	See the common function MakeTradeable in section 2.1.35.3.1.2 which shows the logic which will generate a T035.0 and T035.1

UR4.8 / MCCP093-FD022

User & Functional Design Requirements

	UR Ref
	User Requirement
	FD Ref
	Functional Design Requirement

	UR4.8

	There shall be a T035.1_TradabilityNotification. The behaviour here is identical to for the T035.0, only that the messages are sent to the wholesaler.
	MCCP093-FD022

	See the common function MakeTradeable in section 2.1.35.3.1.2 which shows the logic which will generate a T035.0 and T035.1

UR5.1 / MCCP093-FD023

Accepting a Connection Message and connecting a SPID

User & Functional Design Requirements

	UR Ref
	User Requirement
	FD Ref
	Functional Design Requirement

	UR5.1

	There is an existing function “IsChargeable()”. It is implemented for WaterSupplyPoints, SewerageSupplyPoints, and in the base class SupplyPoint. The current implementation in the base class is not believed to meet any current business rules; both Water and Sewerage SupplyPoints have substantial and ‘specialised’ implementations of the IsChargeable() function. Accordingly, the base class’ method should be replaced and instead return a NotImplementedException, or similar. Of course, we must (continue to) ensure that the base class method is not called.
	MCCP093-FD023

	See Chargeability Test section 2.1.35.2 which details the separate logic for Water and Sewerage SPIDs.
For the proposal regarding the Implementation of the base class see section 2.1.23 below.

UR5.2 / MCCP093-FD024

Accepting a Connection Message and connecting a SPID

User & Functional Design Requirements

	UR Ref
	User Requirement
	FD Ref
	Functional Design Requirement

	UR5.2

	A new function “IsPotentiallyChargeable” (or similar) needs to be created. The logic for “IsPotentiallyChargeable” should be the same as the existing (specialised) “IsChargeable” logic, except that in IsPotentiallyChargeable, any test of “is RV > 0” is assumed to pass (or equivalent).
	MCCP093-FD024

	Please see Detailed Design for the implementation of the two Chargeability methods.

Please see the Chargeability Test section 2.1.35.2 for details of the logic used in the Water and Sewerage calls for these methods.

Detailed Design
The current IsChargeable(DateTime?) method will be implemented as an abstract base class, and remains the same (with RV Check).
public abstract bool IsChargeable(DateTime? connDate);

Furthermore, a new abstract will be created in the SupplyPoint Class for IsPotentiallyChargeable() as follows, and will be referencing an overload of IsChargeable:
public abstract bool IsPotentiallyChargeable(DateTime? connDate);

The WaterSupplyPoint and Sewerage SupplyPoint will override the IsPotentiallyChargeable and IsChargeable. Please see the Chargeability Test section 2.1.35.2 for details of the logic used in the Water and Sewerage calls for these methods.
UR5.2.1 / MCCP093-FD025

Accepting a Connection Message and connecting a SPID

User & Functional Design Requirements

	UR Ref
	User Requirement
	FD Ref
	Functional Design Requirement

	UR5.2.1

	Code reuse between these two functions should be maximised.
	MCCP093-FD025

	The shared methods that will be used to incorporate this functionality have been detailed in (Chargeability Test) section 2.1.35.2
There is no further functional design to add in relation to this user requirement.

UR5.3 / MCCP093-FD026

User & Functional Design Requirements

	UR Ref
	User Requirement
	FD Ref
	Functional Design Requirement

	UR5.3

	In general the existing logic in respect of accepting the connection message [e.g. AcceptConnectionMessage()] should be followed except as specified below:

	MCCP093-FD026

	See section 2.1.35 which details the updated method names that will be used in the Release 3.3 implementation.

UR5.3.1 / MCCP093-FD027

User & Functional Design Requirements

	UR Ref
	User Requirement
	FD Ref
	Functional Design Requirement

	UR5.3.1

	All references to “IsChargeable” to be replaced by “IsPotentiallyChargeable” [recall that for all child URs of UR5.3 / MCCP093-FD026 we are only talking here about when accepting connection messages; this does not apply to e.g. any callers of IsChargeable() in CanMakeTradable()]
	MCCP093-FD027

	See section 2.1.35 which details the updated method names that will be used in the Release 3.3 implementation.

UR5.3.2 / MCCP093-FD028

User & Functional Design Requirements

	UR Ref
	User Requirement
	FD Ref
	Functional Design Requirement

	UR5.3.2

	Remove from the current logic any and all legacy portions of the test related to:

(sp.HistoricalView.MeteringProgramme &&

 sp.ActiveRegistration != null &&

 sp.ActiveRegistration.RegistrationType != NewConnectionType.NEW))
	MCCP093-FD028

	See section 2.1.35 which details the updated method names that will be used in the Release 3.3 implementation.

UR5.3.3 / MCCP093-FD029

User & Functional Design Requirements

	UR Ref
	User Requirement
	FD Ref
	Functional Design Requirement

	UR5.3.3

	Remove from the current logic any and all legacy portions of the test related to:

· checking whether a customer name exists, and
· returning a message to the LP in cases where there is no customer name
	MCCP093-FD029

	See section 2.1.35 which details the updated method names that will be used in the Release 3.3 implementation.

UR5.3.4 / MCCP093-FD030

User & Functional Design Requirements

	UR Ref
	User Requirement
	FD Ref
	Functional Design Requirement

	UR5.3.4

	Some checks as to the existence and the statuses of related supply points need modified. This is covered in next sub-UR.
	MCCP093-FD030

	See section 2.1.35 which details the updated method names that will be used in the Release 3.3 implementation.

UR5.3.5 / MCCP093-FD031

User & Functional Design Requirements

	UR Ref
	User Requirement
	FD Ref
	Functional Design Requirement

	UR5.3.5

	Taking into account the above factors, the logic for accepting a connection message [AcceptConnectionMessage()] should now be as follows:

	MCCP093-FD031

	See section 2.1.35.8 which details the new logic used for AcceptConnectionMessages that will be used in the Release 3.3 implementation.

	· If SPID is not New, Partial or Rejected
· reject with an appropriate error message (...SPID not in correct state)
· If Water SPID
· If IsPotentiallyChargeable
· If there is no associated Sewerage SPID:
· accept message
· else if there is an associated Sewerage SPID
· If associated Sewerage SPID is ‘Tradable, TDISC, PDISC or DEREG”:
· accept message
· Else if associated Sewerage SPID IsPotentiallyChargeable:
· accept message
· Else
· reject with error message (associated Sewerage SPID not potentially chargeable)
· Else
· reject with an appropriate error message (...Water SPID is not potentially chargeable)
· Else [Sewerage SPID]
· If there exists an associated Water SPID which is New, Partial or Rejected:
· reject with error message “Connection message should be sent to associated Water SPID”
· Else [there is No Water SPID or the Water SPID is Tradable, TDISC, PDISC or DEREG]
· If Sewerage SPID IsPotentiallyChargeable:
· accept connection message
· Else
· reject with error message (Sewerage SPID is not potentially chargeable)

UR6.1 / MCCP093-FD032
Processing after a connection message is accepted

User & Functional Design Requirements

	UR Ref
	User Requirement
	FD Ref
	Functional Design Requirement

	UR6.1

	After a T007.0 or T007.1 connection message is accepted, the current T007.2 message should be sent to the relevant LPs. (By “relevant” LPs we mean: where both a Water SPID and an associated Sewerage SPID are connected, T007.2 messages should be sent in respect of each SPID.)

We explicitly want the T007.2 to be sent to an LP, even if they have not yet sent in a successful T003.0_PartialRegistrationApplication for the SPID.
	MCCP093-FD032

	See the detailed design below.
See the Update Supply diagram in section 2.1.35.8 for a visual representation of this logic.

UR6.2 / MCCP093-FD033
User & Functional Design Requirements

	UR Ref
	User Requirement
	FD Ref
	Functional Design Requirement

	UR6.2

	The connection message processing currently updates meter service elements of the SPID to align the effectiveFrom date of the meter to the SPID connection date in cases where the effectiveFrom date of the meter was before the SPID connection date using the test. However, this only applies to connections of type “NEW”. It does not currently apply to Gap Sites, or Connection Change of Use. This should be changed to apply to all types of connection (ie the test on “NEW” should be removed).

	MCCP093-FD033

	See the detailed design below.
See the Update Supply diagram in section 2.1.35.8 for a visual representation of this logic.

Detailed Design

The check on the Active Registration Type will be removed, deleting the following lines:

///<DocStep ID="S12.1" ParentID="Notify Connection">

///If the Active Registration's Registration Type equals New:

///</DocStep>
if (sp.ActiveRegistration.RegistrationType == NewConnectionType.NEW)

All the subsequent S12 SmartDoc tags will be re-numbered due to the hierarchy change.

///<DocStep ID="S12.1.1" ParentID="Notify Connection">

///For each Service Element that belongs to the Supply Point:

///</DocStep>
UR6.3 / MCCP093-FD034
User & Functional Design Requirements

	UR Ref
	User Requirement
	FD Ref
	Functional Design Requirement

	UR6.3

	The connection message processing also updates DPIDs in respect of the SPID (or associated SPID), so that the start date of the DPID is the same as the (SPID) connection date. This updating is currently carried out except in the case of an associated SPID which is already tradable. This exception needs to be generalised to also exclude updating if the associated SPID is tradable, TDISC. PDISC or DEREG. Thus the test should be:
· If the Supply Point is Water and it has an Associated Supply Point and the status of that Associated Supply Point is New, Partial or Rejected.
· Set the start date (SE.EFD) of the Discharge Point to the Connection Date passed in with the Message:
	MCCP093-FD034

	See the detailed design below.
See the Update Supply diagram in section 2.1.35.8 for a visual representation of this logic.

Detailed Design

The current logic states that if the SPID which is being updated is a Sewerage service or if the SPID is a Water SPID with an associated Sewerage SPID (determined by the ConnectionCompleteLogic HasAssociatedSewerage method) is based on the following logic:

1. public bool HasAssociatedSewerage(SupplyPoint sp)
2. {
3. return (
4. sp.Service == ServiceType.WaterService &&
5. sp.AssociatedSupplyPoint != null &&
6. sp.AssociatedSupplyPoint.Status != SupplyPointStatus.Tradable);
7. }
The current ‘if’ logic will be changed from:

if (sp.Service == ServiceType.SewerageService || HasAssociatedSewerage(sp))

To:

if (sp.Service == ServiceType.SewerageService || (sp.Service == ServiceType.WaterService && sp.AssociatedSupplyPoint != null && sp.AssociatedSupplyPoint.IsPreTradeable)

The SmartDoc steps will be changed from:

///<DocStep ID="S13" ParentID="Notify Connection">

///If the Supply Point's Service equals Sewerage Service OR it is a Water Service and it has an Associated Supply Point and the status of that Associated Supply Point is NOT Tradeable:

///</DocStep>
To

///<DocStep ID="S13" ParentID="Notify Connection">

///If the Supply Point's Service equals Sewerage Service OR it is a Water Service and it has an Associated Supply Point and the status of that Associated Supply Point is New, Partial or Rejected.

///</DocStep>
All other related SmartDoc comments will remain as is:

· For each Service Element in the Supply Point:

· If the Service Element is Trade Effluent:

· Set the Effective From date of the Service Element to the Connection Date passed in with the Message.
However, a bug has been spotted in the existing code and should be corrected as follows:
The existing code is:

1. if (sp.Service == ServiceType.SewerageService || HasAssociatedSewerage(sp))
2. {
3. SewerageSupplyPoint ssp = (SewerageSupplyPoint)(sp.Service == ServiceType.SewerageService ? sp : sp.AssociatedSupplyPoint);
4. ///<DocStep ID="S13.1" ParentID="Notify Connection">
5. ///For each Service Element in the Supply Point:
6. ///</DocStep>
7. foreach (ServiceElement se in sp.ServiceElementsArray)
8. {
New Code:
1. if (sp.Service == ServiceType.SewerageService || HasAssociatedSewerage(sp))
2. {
3. SewerageSupplyPoint ssp = (SewerageSupplyPoint)(sp.Service == ServiceType.SewerageService ? sp : sp.AssociatedSupplyPoint);
4. ///<DocStep ID="S13.1" ParentID="Notify Connection">
5. ///For each Service Element in the Supply Point:
6. ///</DocStep>
7. foreach (ServiceElement se in ssp.ServiceElementsArray)
8. {
UR6.4 / MCCP093-FD035
User & Functional Design Requirements

	UR Ref
	User Requirement
	FD Ref
	Functional Design Requirement

	UR6.4

	Where the message is accepted for adding a connection date; and a connection date already exists, the current logic overwrites the existing date (for the SPID and/or) associated SPID. In general, this is acceptable behaviour, but as with the DPID condition above, the exception to changing the connection date for an associated sewerage SPID needs to be broadened from the current tradable condition to include also TDISC, PDISC and DEREG, as follows:
· If the Supply Point is Water and it has an Associated Supply Point and the status of that Associated Supply Point is New, Partial or Rejected.
· Set the Connection Date of the Associated Supply Point to the Connection Date passed in with the Message:

[this bold text above replaces the current text of “with a Status that does NOT equal Tradable”]
	MCCP093-FD035

	See the detailed design below.
See the Update Supply diagram in section 2.1.35.8 for a visual representation of this logic.

Detailed Design

The current logic and SmartDoc tags will be changed from:

///<DocStep ID="S17" ParentID="Notify Connection">

///If the Supply Point is Water and has an Associated Supply Point with a Status that does NOT equal Tradeable:

///</DocStep>

if (HasAssociatedSewerage(sp))

{

 ///<DocStep ID="S17.1" ParentID="Notify Connection">

 ///Set the Connection Date of the Associated Supply Point to the Connection Date passed in with the Message:

 ///</DocStep>

 sp.AssociatedSupplyPoint.ConnectionDate = connectionCompleteType.D2013_ConnectionDate;
To:

///<DocStep ID="S17" ParentID="Notify Connection">

///If the Supply Point is Water and has an Associated Supply Point and the status of that Associated Supply Point is New, Partial or Rejected:

///</DocStep>

if (sp.Service == ServiceType.WaterService && sp.AssociatedSupplyPoint != null && sp.AssociatedSupplyPoint.IsPreTradeable)

{

 ///<DocStep ID="S17.1" ParentID="Notify Connection">

 ///Set the Connection Date of the Associated Supply Point to the Connection Date passed in with the Message:

 ///</DocStep>

 sp.AssociatedSupplyPoint.ConnectionDate = connectionCompleteType.D2013_ConnectionDate;
See Detailed Design Section 2.1.33.2 (UR6.3 / MCCP093-FD034) for the definition of HasAssociatedNewPartialorRejectedSewerage.

Master Diagrams
High Level – Method calls
	
	Flow
	Central Systems Class Name
	IsPotentiallyChargeable
	IsChargeable
	CanMakeTradeable
	MakeTradeable

	
	
	
	(New SupplyPoint.
IsPotentiallyChargeable)
	(SupplyPoint.
IsChargeable)
	(CanConnect)
	(ConnectSPID)

	T003.0
	PartialRegistrationApplication
	PartialRegistrationLogic
	
	
	
	X

	T006.0
	LPWaterSPIDUpdate
	LpWaterSPIDUpdateLogic
	
	
	
	X

	T006.1
	LPSewerageSPIDUpdate
	LPSewerageSPIDUpdateLogic
	
	
	
	X

	T007.0
	WaterConnectionComplete (AcceptConnectionMessage)
	ConnectionCompleteLogicWater
	X
	
	
	X

	T007.1
	SewerageConnectionComplete (AcceptConnectionMessage)
	ConnectionCompleteLogicSewerage
	X
	
	
	X

	T032.0
	CreateUpdateCustomerName
	CustomerNamesLogic
	
	
	
	X

	
	
	CanMakeTradeable
	
	X
	
	

	
	
	Make Tradeable
	
	
	X
	

[image: image4.emf]MakeTradeableHelper

(1) A New Static Class MakeTradeableHelper

The current ConnectionCompleteLogic.CanConnect

method is moved to this class and renamed to the

static Method bool CanMakeTradeable

(2) The current ConnectionCompleteLogic.ConnectSpid

method is moved to this class and renamed to the

static Method bool MakeTradeable

(3) ConnectionCompleteLogic.HasAssociatedSewerage

is moved to this class and renamed to the static

Method bool HasAssociatedNonTradeableSewerage

(4) ConnectionCompleteLogic.HasAssociatedWater is

moved to this class and renamed to the static Method

bool HasAssociatedNonTradeableWater

SupplyPoint.IsPreTradeable

A New Property of SupplyPoint

SPID.status == New ||SPID.status == Partial ||SPID.status == Rejected

--

IsChargeable remains the same as per existing.

IsPotentiallyChargeable Is Created which is the same as the current IsChargeable

without The RV Check.

(See Chargeability Test Tab for more details)

Chargeability Test

[image: image5.emf]IsPotentiallyChargable

(New)

IsChargeable

(UR 5.2) Same as IsChargeable original

checks BUT WITH NO RV check

Remains the same (with RV check)

IsPotentiallyChargeable will be referencing an

overload of IsChargeable.

WaterSupplyPoint.IsPotentiallyChargeable

[image: image6.emf]WaterSupplyPoint.IsPotentiallyChargeable(DateTime? connDate)

Start

Start

ContainsNonMeteredSE(connDate)

SetHistoricViewDate =

connDate

ContainsRateableValueSE(connDate)

Yes

No

Yes

ContainsMeteredSE(connDate)

No

Yes

HistoricalView.MeteringProgramme

No No

Yes

Fulfills URs 5.2

Return true

Return true

Return true

Return false

Return true

SewerageSupplyPoint.IsPotentiallyChargeable

[image: image7.emf]Start

Start

SetHistoricViewDate =

connDate

ContainsRateableValueSE(connDate)

Yes

ContainsNonMeteredSE(connDate)

Yes

No

AssociatedSupplyPoint != null &&

AsscociatedSupplyPoint.Service = WaterService

No

ContainsMeteredSE(connDate)

Yes Yes

HistoricalView.MeteringProgramme

No

SewerageSupplyPoint.IsPotentiallyChargeable(DateTime? connDate)

Return true

Return true

No

Yes

Return true

Return true

No

Return false

Fulfills URs 5.2

WaterSupplyPoint.IsChargeable

[image: image8.emf]WaterSupplyPoint.IsChargeable(DateTime? connDate)

Start

Start

ContainsNonMeteredSE(connDate)

SetHistoricViewDate =

connDate

ContainsRateableValueSE(connDate)

Yes

No

HistoricalView.MeteringProgramme

HistoricalViewRateableValue > 0

Yes

Yes

No

ContainsMeteredSE(connDate) HistoricalView.MeteringProgramme

No

Yes

HistoricalViewRateableValue > 0

Yes

HistoricalView.MeteringProgramme

No

No

HistoricalViewRateableValue > 0

Yes

HistoricalViewRateableValue > 0

No

Yes

Fulfills URs 5.2

Return true

Return false

Return true

No

Yes

Return true

Return false

No

Yes

Return true

Return false

No

Return true

Return false

No

Yes

Return true

Return false

SewerageSupplyPoint.IsChargeable

[image: image9.emf]Start

Start

SetHistoricViewDate =

connDate

ContainsRateableValueSE(connDate)

RateableValue > 0

Yes

ContainsNonMeteredSE(connDate) HistoricalView.MeteringProgramme

Yes RateableValue > 0

Yes

No

AssociatedSupplyPoint != null &&

AsscociatedSupplyPoint.Service = WaterService

No

ContainsMeteredSE(connDate)

HistoricalView.MeteringProgramme

Yes

Yes

RateableValue > 0

No

Yes

No

No

SewerageSupplyPoint.IsChargeable(DateTime? connDate)

Fulfills URs 5.2

No

Yes

Return true

Return false

No

Yes

Return true

Return false

No

Yes

Return true

Return false

Return true

HistoricalView.MeteringProgramme

RateableValue > 0

No

Yes

No

Yes

Return true

Return false

Return true

No

Tradeability Test

Section 2.1.35.3.1.1 on page 74 shows the diagram for CanMakeTradeable and section 2.1.35.3.1.2 on page 75 shows the diagram for MakeTradable, both of these methods encompass the tradability test that will be introduced as part of Release 3.3. The MakeTradable method initially calls the CanMakeTradeable, meaning that MakeTradable can be called in isolation.

CanMakeTradeable

[image: image10.emf]CanMakeTradeable (SupplyPoint sp) [MakeTradeableHelper.cs]

(Previously CanConnect)

Start

Start

SPID Has ConnectionDate

AND

isChargeable

AND

SPID.Status is PARTIAL

NO

YES

Success

Failure

Fulfills URs: 4.1, 4.3, 4.5

Return TRUE

Return FALSE

Finish

Get SPIDs Customer from DB

Return FALSE

Checking for SPID.status means checking for the current

(I.e. MOST RECENT SPI Status)

MakeTradeable

[image: image11.emf]MakeTradeable (SupplyPoint sp) [MakeTradeableHelper.cs]

(previously ConnectSPID)

Fulfills URs: 4.2, 4.4, 4.5, 4.6

Start

Start

YES

YES

NO

associatedSPID !=null

AND

associatedSPID.IsPreTradeable

NO

YES

Set SPID.status = Tradeable

CompleteActiveRegistration(DateTime startDate,DateTime confirmationDate)

ActiveRegistration.StartDate = startDate;

ActiveRegistration.RegistrationConfirmationDate = confirmationDate;

ActiveRegistration.Status = RegistrationStatusType.Completed;

LP = ActiveRegistration.LP;

SPID.ActiveRegistration = null;

Save SPID

(success) For SPID

T0035.0 TradeabilityNotification (LP)

&

T0035.1 TradeabilityNotification (SWW)

T0035.0 TradeabilityNotification (LP)

&

T0035.1 TradeabilityNotification (SWW)

associatedSPID.CanMakeTradeable Set associatedSPID.status = Tradeable

CompleteActiveRegistration(DateTime startDate,DateTime confirmationDate)

ActiveRegistration.StartDate = startDate;

ActiveRegistration.RegistrationConfirmationDate = confirmationDate;

ActiveRegistration.Status = RegistrationStatusType.Completed;

LP = ActiveRegistration.LP;

associatedSPID.ActiveRegistration = null;

Save associatedSPID

(success) For associatedSPID

T0035.0 TradeabilityNotification (LP)

&

T0035.1 TradeabilityNotification (SWW)

T0035.0 TradeabilityNotification (LP)

&

T0035.1 TradeabilityNotification (SWW)

NO

Finish

SPID.CanMakeTradeable SPID.isWater

YES

Finish

NO

Finish

Return TRUE

Return FALSE

Return FALSE

Return FALSE

failure

failure

associatedSPID !=null

AND

associatedSPID.IsPreTradeable

NO

YES

T003.0 Flow

[image: image12.emf]Start

Start

Send T009.0 Notification (AB)

Send T009.0 Notification (AB)

D2001_spid ! = null No

PartialRegistrationLogic.CheckSPIDExists

Load Spid From Database

Send T009.0 Notification (AC)

Send T009.0 Notification (AC)

Failure

Yes

Sp.Status = New

Success

Sp.Status =

Tradeable

No

Send T009.0 Notification (AF)

(The SPID is already in status: Tradeable)

Send T009.0 Notification (AF)

(The SPID is already in status: Tradeable)

Yes

Send T009.0 Notification (AF)

(The SPID is not in the correct state for a partial Registration Application, MID)

Send T009.0 Notification (AF)

(The SPID is not in the correct state for a partial Registration Application, MID)

No

CheckSPIDExists returns True

YES

[image: image13.emf]PartialRegistrationLogic.CheckValidLP

Load Spid From Database

Send T009.0 Notification (AA)

Send T009.0 Notification (AA)

Failure

Sp.Status == New

Or Partial

Sp.ActiveRegistartion. LP

== D1005_SenderOrgId

Yes

Success

Sp.ActiveRegistration !=

null

No

Sp.ActiveRegistartion. LP

== D1005_SenderOrgId

Yes

Sp.Lp

==D1005_SenderOrgId

Sp.Lp !=Null No

Yes

Yes

Sp.Lp

==D1005_SenderOrgId

No

Yes

No

Send T009.0 Notification (AA)

Send T009.0 Notification (AA)

No

Yes

Yes

CheckSPIDExists

IS True

CheckValidLP returns True

[image: image14.emf]Load Spid From Database

Set Sp.Status =Partial

Success

Load LicenceProvider from

Database

Load Registration from

Database

Success

Log Error

Throw Exception

Failure

Failure

Create New registration

Set sp.ActiveRegistration =

registration Failure

Success

Fulfils URs 4.5, 4.5.3

SPID.IsSewerage

AND

(associatedSPID != null AND

associatedSPID.isPreTradeable)

Yes

NO

CheckValidLP IS True

Call MakeTradeable (SupplyPoint)

(see Tradeability Test R3.3)

Send T009.0 Notification (OK)

Send T009.0 Notification (OK)

Pass SPID as SupplyPoint Pass associatedSPID As SupplyPoint

Finish

T006.0 Flow

[image: image15.emf]Start

Start

LPWaterSpidUpdateWF

Does the SPID exist NO

Finish

Send T009.0 Error Notification (AC)

The SPID is not valid

Send T009.0 Error Notification (AC)

The SPID is not valid

SPID.status == Partial

YES

NO SPID.status == Tradeable YES

Send T009.0 Error Notification (GA)

SPID is Tradeable status so cannot be updated

Send T009.0 Error Notification (GA)

SPID is Tradeable status so cannot be updated

Send T009.0 Error Notification (GA)

SPID is not in Partial status

Send T009.0 Error Notification (GA)

SPID is not in Partial status

NO

Finish

YES

SPID.IsWater

NO

YES

Send T009.0 Error Notification (DC)

SPID is not of correct type for this request

Send T009.0 Error Notification (DC)

SPID is not of correct type for this request

Finish

Is LP Valid

YES

NO

Send T009.0 Error Notification (AA)

Send T009.0 Error Notification (AA)

Finish

Call UpdateSPID (T006.0)

Finish

[image: image16.emf]T006.0 UpdateSPID

Start

Start

Load SPID

Update 1980 SPI Record

If SIC Code was supplied in the T006.0 message then

set the new SupplyPointInfo Sic Code to that value

If Customer Classification was supplied in the T006.0

message then set the new SupplyPointInfo Customer

Classification to that value

If RV was supplied in the T006.0 message then set

the new SupplyPointInfo RV to that value.

Check the updateStatus of the SPID. If it is ‘New’ then

set the update status to ‘SpidDataInly’.

If it is ‘SeDataOnly’ then set the updateStatus to ‘Both’.

Otherwise leave the updateStatus as is.

Save SPID

Fulfills URs 4.5, 2.4, 2.5

PropagateHistoryInfo starting at

1980 SPI

associatedSPID != null

NO

Send T009.0 Notification (OK)

Send T009.0 Notification (OK)

Finish

YES

associatedSPID.IsPreTradeable

NO

YES

Use InputDate =

transactionHeader.D1007_TransactionTimestamp

Use InputDate =

01/01/1980

Propagate the Change forward through the

SPI for associatedSPID starting at the

<InputDate>SPI record

-PropagateHistoryInfo(<InputDate>)

Save SPID

Call MakeTradeable (SupplyPoint) –USE WS

(see Tradeability Test R3.3)

T006.1 Flow

[image: image17.emf]LPSewerageSpidUpdateWF

Start

Start

Does the SPID exist NO

Finish

Send T009.0 Error Notification (AC)

The SPID is not valid

Send T009.0 Error Notification (AC)

The SPID is not valid

SPID.status == Partial

YES

NO SPID.status == Tradeable YES

Send T009.0 Error Notification (GA)

SPID is Tradeable status so cannot be updated

Send T009.0 Error Notification (GA)

SPID is Tradeable status so cannot be updated

Send T009.0 Error Notification (GA)

SPID is not in Partial status

Send T009.0 Error Notification (GA)

SPID is not in Partial status

NO

Finish

YES

SPID.IsSewerage

NO

Send T009.0 Error Notification (ED)

SPID is not of correct type for this request

Send T009.0 Error Notification (ED)

SPID is not of correct type for this request

Finish

Is LP Valid

YES

NO

Send T009.0 Error Notification (AA)

Send T009.0 Error Notification (AA)

Finish

Call UpdateSPID (T006.1)

Has the SPID

got an Assoc water

SPID where the status is neither

Disconn or DeReg

YES

NO

Send T009.0 Error Notification (AG)

Cannot overwrite Water SPID data

Send T009.0 Error Notification (AG)

Cannot overwrite Water SPID data

Finish

YES

[image: image18.emf]T006.1 UpdateSPID

Fulfills URs 4.5, 2.6, 2.7, 2.8

Start

Start

Load SPID

Update 1980 SPI Record

If Customer Classification was supplied in the T006.1

message then set the new SupplyPointInfo Customer

Classification to that value

If RV was supplied in the T006.1 message then set the

new SupplyPointInfo RV to that value.

If SIC Code was supplied in the T006.1 message then

set the new SupplyPointInfo Sic Code to that value

Check the updateStatus of the SPID. If it is ‘New’ then

set the update status to ‘SpidDataOnly’.

If it is ‘SeDataOnly’ then set the updateStatus to ‘Both’.

Otherwise leave the updateStatus as is.

Save SPID

Call MakeTradeable (SupplyPoint)

(see Tradeability Test R3.3)

PropagateHistoryInfo starting at

1980 SPI

Finish

IMPORTANT REMINDER (To developer)

We INTENTIONALLY removed the DF check here

As requested by CMA

Send T009.0 Notification (OK)

Send T009.0 Notification (OK)

T032.0 Flow

[image: image19.emf]Start

Start

T032.0 Message Processing – High Level Overview

CustomerNamesWF

CustomerNamesLogic

CheckSPIDExists [

CustomerNamesLogic

]

Start

Start

Load the Water SP or the Sewerage SP

If the SP is not NULL

Set the HistoricalViewData to the current System Date

Not Null

If the

SP Status is Tradable & the

SP LP = the T032 LP

OR

If the

Historical View SP Status is Partial & there is an Active

Registration and the Active Registration LP = the T032 LP

Yes

True

False

False

CheckSPIDNotPairedSewerage

T009.0 [AC]

Issued to LP

T009.0 [AC]

Issued to LP

Null

T009.0 [AA]

Issued to LP

T009.0 [AA]

Issued to LP

No

[image: image20.emf]CheckSPIDNotPairedSewerage

SPIDPairedSewerage

validateCustomerName

Paired

True

False

Not Paired

Load a Sewerage SP using the T032 SPID

Start

Start

Paired

Finish

Start

Start

Not Paired

If the Customer Name:

·

Does not contain one letter

·

Contains Control Characters

·

Does not start with a letter or number

·

Is greater than 255 characters

Start

Start

OK

True

False

Has validation errors

CustomerNameInvalid

Finish

Start

Start

Has validation errors

Customer Name is valid

T009.0 [DX]

Issued to LP

T009.0 [DX]

Issued to LP

T009.0 [DV]

Issued to LP

T009.0 [DV]

Issued to LP

UpdateCustomerName

If the SP is Not NULL AND

The associated SP is != null

AND

associatedSPID is not

(Disconn, Dereg)

[image: image21.emf]UpdateCustomerName

Load the Water SP or the Sewerage SP based on the T032 SPID

Start

Start

Load existing or create new customer name entity

Assign:

·

Customer Name

·

Customer Name Type

·

Core

Create new customer name History entity

Set Customer Name Details = customer

Assign:

·

Type

·

Name

·

EffectiveDate (current system date)

·

ValidationFailureReason

Add Customer History Record to the Customer Entity

Save or Update Customer Record

SendSewerageSpidNotification

Exit

Start

Start

If the T032.0 SP Service

Type is Water

Sewerage

If the SP has loaded and there is an active

registration with an associated SW SP where the LP

is different to the T032

Exit

False

True

If the associated SP does

have an LP assigned

Associated LP

Exit

Exit

Active Registration LP

Finish

T009.0 [OK]

Issued to LP

T009.0 [OK]

Issued to LP

T032.1

Issued to LP

T032.1

Issued to LP

T032.1

Issued to LP

T032.1

Issued to LP

SendSewerageSPIDNotification

Call MakeTradeable (SupplyPoint)

(see Tradeability Test R3.3)

Fulfills UR 4.5

T007.0 / T007.1 Flows

[image: image22.emf]Start

Start

T007.0, T007.1 Notify Connection Complete (WS)

(ConnectionCompleteLogic.cs)

Valid T007.0

Valid T007.0

Valid T007.1

Valid T007.1

YES YES

SSConnectionCompleteWF

IsSewerageSpid

WSConnectionCompleteWF

IsWaterSpid

Call ConnectionCompleteLogic -

CheckManadatorySupplyPointElements

NO

Send T009.1 Error Notification (DC)

Send T009.1 Error Notification (DC)

Send T009.1 Error Notification (ED)

Send T009.1 Error Notification (ED)

NO

[image: image23.emf]ConnectionCompleteLogic.CheckManadatorySupplyPointElements

Failure

Send T009.1 Error Notification (AC)

Send T009.1 Error Notification (AC)

Success

Send T009.1 Error Notification (AI)

Send T009.1 Error Notification (AI)

Yes

Yes

No

Send T009.0 Error Notification (DL)

Send T009.0 Error Notification (DL)

No Yes

Send T009.1 Error Notification (AW)

Send T009.1 Error Notification (AW)

No

Yes

Send T009.1 Error Notification (DH)

Send T009.1 Error Notification (DH)

Yes

Get SPID from Database

Start

Start

D2013_Connection Date > Now

Is SPID Water

No

Is Sender Wholesaler

Call ConnectionCompleteLogic –

AcceptConnectionMessages

SP has Active Registration AND

Active Registration LP is Not Sender

SP has Associated Supply Point(WS)

AND AssociatedSPID.isPreTradeable

No

[image: image24.emf]YES

NO

NO

ConnectionCompleteLogic.AcceptConnectionMessages

YES

Fulfills UR 5.3

Start

Start

SPID.IsPreTradeable

Is SPID Water SPID.IsPotentiallyChargeable

NO

YES SPID.associatedSPID != null NO

Accept Message and Update Supply Point

(See UpdateSupply)

!

associatedSPID.IsPreTradeable

OR

associatedSPID.IsPotentiallyChargeable

YES

YES

NO

SPID.associatedSPID !=null

AND

associatedSPID.IsPreTradeable

YES

NO

SPID.IsPotentiallyChargeable

Accept Message and Update Supply Point

(See UpdateSupply)

YES

NO

Send T009.1 Notification To Wholesaler (GW)

Supply Point must be pre-Tradeable

Send T009.1 Notification To Wholesaler (GW)

Supply Point must be pre-Tradeable

Send T009.1 Notification To Wholesaler (GZ)

Sewerage Supply Point is not (potentially)

chargeable on given connection date

Send T009.1 Notification To Wholesaler (GZ)

Sewerage Supply Point is not (potentially)

chargeable on given connection date

Send T009.1 Notification To Wholesaler (GZ)

Sewerage Supply Point is not (potentially)

chargeable on given connection date

Send T009.1 Notification To Wholesaler (GZ)

Sewerage Supply Point is not (potentially)

chargeable on given connection date

Send T009.1 Notification To Wholesaler (GX)

Connect the sewerage Supply Point via the water SP,

as the water is pre-Tradeable

Send T009.1 Notification To Wholesaler (GX)

Connect the sewerage Supply Point via the water SP,

as the water is pre-Tradeable

Send T009.1 Notification To Wholesaler (GY)

Water Supply Point is not (potentially)

chargeable on given connection date

Send T009.1 Notification To Wholesaler (GY)

Water Supply Point is not (potentially)

chargeable on given connection date

[image: image25.emf]NO

Update Supply [ConnectionCompleteLogic.cs]

Fulfills URs 4.4, 6.1, 6.2, 6.3, 6.4

Start

Start

SP HasActiveRegistration YES

Loop Through Service Elements

For each of the MeteredWater Services

Physical meters Update the initail Read

Dates to D2013 Connection Date YES

Loop Through Service Elements, For each of the

Trade Effluent Elements:

Update the Effective From Date To

The D2013 Connection Date

NO

Update SupplyPoint.Connection Date = D2013 Connection Date

If SP Has a creation Date and The Creation Date > D2013

Connection Date set the CreationDate = D2013 Connection Date

(sp IsWater AND associatedSPID != null

AND AssociatedSPID.IsPreTradeable)

YES

NO

Update AssociatedSupplyPoint as follows:

AssociatedSPID.ConnectionDate = D2013 Connection Date

If AssociatedSPID Has a creation Date and The AssociatedSPID.CreationDate > D2013 Connection Date

Then set the AssociatedSPID.CreationDate = D2013 Connection Date

Send T009.1 Notification (OK)

Send T009.1 Notification (OK)

FALSE

Call SPID.MakeTradeable

(see Tradeability Test R3.3)

Finish

Set ConnectAssoc = TRUE

Set ConnectAssoc = FALSE

SP IsSewerage

OR

(sp IsWater AND associatedSPID != null

AND AssociatedSPID.IsPreTradeable)

ConnectAssoc.Value

Send T007.2 Notification to LP (associatedSPID)

Send T007.2 Notification to LP (associatedSPID)

TRUE

Send T007.2 Notification to LP (SPID)

Send T007.2 Notification to LP (SPID)

CMACP158 – Introduction
There is a problem with the Listener Service on production in that it sometimes stops processing messages. Usually when this happens the service process is apparently still running, but it does not respond to restart requests. Reproducible steps to trigger the problem are not known.

The current workaround is to restart the Listener service when the problem occurs. However, this does not solve any underlying issues.

UR1.1 / CMACP158-FD001
(Upon Abnormal termination) When the Listener Service terminates because of an exception, a stack trace or a “core dump” (containing a stack trace) shall be logged somewhere appropriate.

User & Functional Design Requirements

	UR Ref
	User Requirement
	FD Ref
	Functional Design Requirement

	UR1.1

	For the avoidance of doubt, if the Listener Service currently happens to catch exceptions which it does not handle other than (perhaps logging and then) immediately “gracefully” exiting, this shall be considered “termination because of an exception”. This point is raised because of the fear that gracefully exiting may throw away the useful stack information in the caught exception.
	CMACP158-FD001

	When an exception is caught via the main Listener Service program; the exception message and associated stack trace will be written to the Nlog database rather than the current “The thread aborted unexpectedly” error message.
This will enable the OSP and DSP to investigate any issues that are audited.

UR1.2 / CMACP158-FD002

User & Functional Design Requirements

	UR Ref
	User Requirement
	FD Ref
	Functional Design Requirement

	UR1.2

	In the event that the Listener Service terminates because of an exception, the running status should change to “Stopped”.

	CMACP158-FD002

	When an exception is caught and if the Nlog database is available then an error is raised “The thread aborted unexpectedly” however there is no further detail. After writing this error exception the current thread is aborted.
This current behaviour shall be changed so that the Exception is thrown, rather than aborting the current thread. Throwing the exception will cause the Listener Service status to change from Running to Stopped.

UR1.3 / CMACP158-FD003

User & Functional Design Requirements

	UR Ref
	User Requirement
	FD Ref
	Functional Design Requirement

	UR1.3

	Provide detailed implementation notes specifying how the listener service should be changed to automatically restart in the event of a failure
	CMACP158-FD003

	The Implementation Notes will include additional steps that the operator will need to follow in order to configure the Listener Service to automatically restart in the event that the Service Stops unexpectedly.

UR1.4 / CMACP158-FD004

User & Functional Design Requirements

	UR Ref
	User Requirement
	FD Ref
	Functional Design Requirement

	UR1.4

	If the Listener Service terminates due to a SQL connection issue (for example the Nlogdatabase is not available) then a Windows Event should be raised (so that it will be accessible via the Event Viewer).

	CMACP158-FD004

	The Listener Service Setup application will be modified to create a new Windows Event Log called “CMA Listener Service” if it does not already exist. If the “CMA Listener Service” Log already exists, a new information audit entry will be added stating that the service has been re-installed.
If any error is caught by the Listener Service then in the first instance this will be logged as an error in the “CMA Listener Service” event log; this ensures that the exception details (including the stack trace) will be logged, even if the SQL instance is not available.
The operator should have a process in place to monitor the CMA Listener Service event log for any exceptions.

UR2.1 / CMACP158-FD005

Log Service Start as well Service End Events; the logging of the Listener Service should create audit records in the Nlog database to confirm that the service has started (to be consistent with the auditing that occurs when the service is stopped).

User & Functional Design Requirements

	UR Ref
	User Requirement
	FD Ref
	Functional Design Requirement

	UR2.1

	Write to the Event Viewer when the Listener Service starts and stops (in additional to logging in NLogdatabase).

	CMACP158-FD005

	When the CMA Listener Service starts an Information Event audit entry will be created detailing that “The CMAListener Service was started”.
When the CMA Listener Service stops (without throwing an exception, such as stopping the service by the Services MMC) an Information Event audit entry will be created detailing that “The CMAListener Service was stopped”.

The same messages will be added to the Nlog database.

UR3.1 / CMACP158-FD006

User & Functional Design Requirements

	UR Ref
	User Requirement
	FD Ref
	Functional Design Requirement

	UR3.1

	Modify the Service Stop Event so the Listener Service completes its current processing before it is stopped. This is to prevent the ‘Fatal’ exception that is raised in the Nlog database when the service is stopped & to allow the current transaction to complete.

	CMACP158-FD006

	The Listener Service Stop and ProcessMessages methods will be modified so that a new Boolean (receivedStopRequest) will be used to elegantly allow the Listener Service to finish the current task.
On start-up the receivedStopRequest Boolean will be set to false.
When the Stop method is called, the receivedStopRequest Boolean will be set to true.

The ‘while’ loop (1 ==1) logic will be extended so that if the receivedStopRequest is set to True or if the current thread is not in a running state, the ‘while’ loop will be exited and the Listener Service status will become ‘Stopped’.

The Stop method logic will be extended so that it will monitor the current thread state, if the current thread does not gracefully stop within 10 pauses (using the existing Listener Service pause parameter value) then the thread will be aborted and an exception will be thrown. This is to mitigate against a workflow class becoming ‘stuck’ in the event that the service has been stopped via the MMC.

Central Systems - Error Codes
The following table shows the modifications and additional error codes that will be delivered in Release 3.3.

	Code
	Original Message
	Release 3.3 Message Text

(If blank - original message is used)
	Notes

	AA
	Sender must be a valid Licensed Provider
	
	

	AB
	SPID must be supplied in the transaction
	
	

	AC
	SPID does not exist in the Central Systems
	
	

	AD
	Meter read submitted as re-read. An exact duplicate Ignore ReaFd does not exist for the Meter Read
	
	

	AE
	SPID status must be Tradeable.
	
	

	AF
	SPID status must be New.
	
	

	AG
	SS SPID data cannot overwrite WS SPID Data
	
	

	AH
	SPID status is TDISC OR Reconnected
	
	

	AI
	Confirmed Connection Date must be in the past (upon receipt)
	
	

	AJ
	Data required to complete New SPID process has not been received i.e. no charegable SEs exist/ an RV is required.
	
	

	AK
	Transfer Registration Rejected: Registration Start Date outside permitted window
	
	

	AL
	Licensed Provider nominated by Scottish Water has rejected registration for a new SPID
	
	

	AM
	Invalid Cancellation: Outside Cancellation Window
	
	

	AN
	Sender must be a Licensed Provider or the meter is a Pseudo meter
	
	

	AO
	Taps/Troughs must be Farm or Croft
	
	

	AP
	Meter is PDISC or has been swapped and is Old meter
	
	

	AQ
	Transfer Registration Rejected: Registration to other Applicant already in progress.
	
	

	AR
	Transfer Registration Rejected: Applicant already registered to SPID or transfer to Applicant already pending.
	
	

	AS
	Cancellation request not applicable to this Licensed Provider
	
	

	AT
	Meter Read Rejected: Read Type inappropriate
	
	

	AU
	SPID Disconnection date must be today or in the past
	
	

	AV
	SPID status must be Partial or Tradeable
	
	

	AW
	Sender must be a Licensed Provider with an Active Registration
	
	

	AX
	Transfer Registration Rejected: SPID is Disconnected
	
	

	AY
	Old meter must be active
	
	

	AZ
	A meter can only be added to a WS SPID
	
	

	BA
	Cannot make SPID Unmeasurable: Has meter
	
	

	BB
	RESERVED FOR FUTURE USE
	
	

	BC
	Meter Read Rejected: Meter not associated to SPID (mismatch)
	
	

	BD
	DO NOT REUSE
	
	

	BE
	Meter Read Rejected: outside meter capacity limit
	
	

	BF
	A read for this date already exists
	
	

	BG
	Meter Read Rejected: Licensed Provider not registered to SPID
	
	

	BH
	Meter Read Rejected: daily usage too high
	
	

	BI
	New meter read date must be the same or after the old meter read date
	
	

	BL
	Meter Read Rejected: daily usage too low
	
	

	BN
	Meter Read Rejected: small negative meter advance; would create a negative charge
	
	

	BV
	Meter Read Rejected: negative meter advance larger than 3m3 per day; would create a negative charge
	
	

	BZ
	Meter Read Rejected: zero meter advance
	
	

	DA
	DO NOT REUSE
	
	

	DB
	WS SPID and/or SS SPID does not exist in the Central Systems
	
	

	DC
	Transaction must be for a WS SPID
	
	

	DD
	Service category already exists for this connection
	
	

	DE
	Old and New Meters incompatible for meter swap. Old Meter is not a domestic meter
	
	

	DF
	Effective From date predates previous change
	
	

	DG
	Meter not associated to SPID
	
	

	DH
	Cannot complete connection of sewerage service before the related water service
	
	

	DI
	SPID has passed the switching limit
	
	

	DJ
	Transaction must contain: Sender, Recipient, Timestamp, SPID.
	
	

	DK
	Effective From date cannot be in the future
	
	

	DL
	Sender must be wholesaler.
	
	

	DM
	Discharge Point already exists
	
	

	DN
	Discharge point is discontinued
	
	

	DO
	SPID and DPID are not associated
	
	

	DP
	Discharge Point not associated with the water meter
	
	

	DQ
	Discharge Point already discontinued
	
	

	DR
	Discharge Point ID does not exist in the Central Systems
	
	

	DS
	TE Allowance plus Return to Sewerage Allowance cannot exceed 100%
	
	

	DT
	Cannot associate a Discharge Point with a water meter that doesnt exist in the Central Systems.
	
	

	DU
	DO NOT REUSE
	
	

	DV
	Invalid Customer Name
	
	

	DW
	Customer Name is not present
	
	

	DX
	SPID does not exist or it is a Sewerage SPID that is paired to a Water SPID
	
	

	DY
	Meter is a Pseudo Meter
	
	

	DZ
	Either SPID or Registration Start date is not valid.
	
	

	EA
	String does not conform to GIS specification
	
	

	EB
	Comments field must be populated. The comment must be between 1 and 255 characters long
	
	

	EC
	No GIS data provided
	
	

	ED
	Transaction must be for a SS SPID
	
	

	EE
	CS disagrees with Rollover Indicator provided
	
	

	EF
	Unable to determine Rollover Status. Please supply Rollover Indicator
	
	

	EG
	There are no Licensed Providers available for Gap Site allocation
	
	

	EH
	All other values with the exception of Rollover Indicator matched a previous read for the same date
	
	

	EI
	The Rollover Indicator may not be present on an O or and I read
	
	

	EJ
	SPID status must be connected.
	 Supply Point must not be disconnected or deregistered
	

	EK
	Message does not contain Org SenderID or Org Recipient ID
	
	

	EL
	Message must not contain SPID and Effective From Date
	
	

	EM
	SPID Status is Disconnected, it must be connected or TDISC
	
	

	EN
	SPID status is TDISC
	
	

	EO
	SPID status is reconnected
	
	

	EP
	SPID does not have an active registration
	
	

	EQ
	SPID status must be new or partial
	
	

	ER
	The unmeasureable Service Element on the SPID already has an Effective To date set
	
	

	ES
	TA cannot be set, Associated Water SPID is disconnected
	
	

	ET
	SPID status is disconnected or SPID has Transitional Indicator set to true
	
	

	EU
	SPID status is Unmeasureable
	
	

	EV
	SPID status must be partial or connected
	
	

	EW
	SPID status is disconnected or has been rejected.
	
	

	EX
	Licensed Provider Org ID does not match Sender Org ID
	
	

	EY
	Meter does not exist in the Central Systems
	
	

	EZ
	Meter is a Pseudo Meter
	
	

	FA
	Meter already exists in the Central Systems
	
	

	FB
	Meter ID must be included in the transaction
	
	

	FC
	Meter Make must be included in the transaction
	
	

	FD
	Meter Serial Number must be included in the transaction
	
	

	FE
	SPID Status is Unmeasureable or it is a special case (i.e. TA set and has one service element and that SE is unmeasureable)
	
	

	FF
	Meter Read Frequency must be N
	
	

	FG
	Chargeable Meter Size must be 20mm
	
	

	FH
	Meter is attached to a SPID and a SPID must be provided
	
	

	FI
	Meter does not exist in the Central Systems or is a Pseudo Meter.
	
	

	FJ
	SPID status must be Tradeable or TDISC
	
	

	FK
	Meter is a non-market meter and is not linked to a SPID
	
	

	FL
	Meter does not exist in the Central Systems
	
	

	FM
	Both old and new meter must be included in the transaction
	
	

	FN
	Old and/or New Meter does not exist in the Central Systems
	
	

	FO
	Meter either has previous reading or old meter read type is not E and/or New Meter Read type is not O
	
	

	FP
	Meter is discontinued or has already been swapped
	
	

	FQ
	Old and/or New meter is a Pseudo meter
	
	

	FR
	Old and New meters must contain same chargeable size and RTS.
	
	

	FS
	Old and New meters incompatible for meter swap. New meter is in meter network
	
	

	FT
	New meter must be active or pending
	
	

	FU
	Sender does not exist in Central Systems
	
	

	FV
	Meter Read date is earlier than the Effective To date of Unmeasureable Service Elements associated with the Supply Point
	
	

	FW
	Read is a Duplicate Initial Read or Duplicate Final Read
	
	

	FX
	Meter read must be on a date after the last meter reading
	
	

	FY
	Initial Meter Reading Rejected: Meter Readings already exist
	
	

	FZ
	Transaction must contain SPID and SPID Sender Org Id or Recipient Org Id.
	
	

	GA
	SPID status must be Partial
	
	

	GB
	Effective Date and/or Metered Water Flag values must be different to the current values in the Central Systems
	
	

	GC
	Effective Date must be on or after 1 April 2011
	
	

	GD
	The WS SPID Status must be new or partial, the SS SPID Status must be partial or tradeable
	
	

	GE
	
	
	

	GF
	 A New or Partial Supply Point cannot be permanently disconnected; deregistration must be used
	
	

	GG
	 There are unterminated meter(s) at the Supply Point
	
	

	GH
	 There are unterminated Trade Effluent Discharge Point(s) at the Supply Point
	
	

	GI
	 RESERVED FOR FUTURE USE
	
	

	GJ
	 Sewerage SPID has been associated to a Tradeable Water SPID at some point since the D4006_EffectiveFrom
	
	

	GK
	 SPID has not been Tradable or TDISC continuously since the D4006_EffectiveFrom
	
	

	GL
	 SPID must be continuously vacant since the D4006_EffectiveFrom
	
	

	GM
	 Date of Evidence too early compared to the transaction date
	
	

	GN
	 SPID has transferred LP since the D4006_EffectiveFrom, or LP transfer is pending
	
	

	GO
	 SPID must be continuously vacant since the D4006_EffectiveFrom
	
	

	GP
	 There is already an existing Open Vacancy Application for this SPID
	
	

	GQ
	 Details do not match any opened T034.0 Vacancy Scheme Application
	
	

	GR
	 Vacancy Scheme Application has been previously closed
	
	

	GS
	Vacancy Scheme Grace Period has not yet elapsed (LP not yet notified)
	
	

	GT
	 Vacancy Scheme Application Rejected due to late T034.4
	
	

	GU
	 Date cannot be in the future
	
	

	GV
	
	Supply Point must not be pre-Tradeable
	

	GW
	
	Supply Point must be pre-Tradeable
	

	GX
	
	Connect the sewerage Supply Point via the water SP, as the water is pre-Tradeable
	

	GY
	
	Water Supply Point is not (potentially) chargeable on given connection date
	

	GZ
	
	Sewerage Supply Point is not (potentially) chargeable on given connection date
	

	XA
	Licensed Provider rejects registration for a new SPID
	
	

� EMBED Word.Picture.8 ���

	Author

Filename

Status

Version

Date

	Andrew Begley
Release 3.3 Design Document 2012-05-01.docx
Draft
2012-05-01
01/05/2012
	Page 1 of 3

	

[image: image27.wmf]

_1401196457.vsd
WaterSupplyPoint.IsChargeable(DateTime? connDate)

Start

ContainsNonMeteredSE(connDate)

SetHistoricViewDate = connDate

ContainsRateableValueSE(connDate)

Yes

No

HistoricalView.MeteringProgramme

HistoricalViewRateableValue > 0

Yes

Yes

No

ContainsMeteredSE(connDate)

HistoricalView.MeteringProgramme

No

Yes

HistoricalViewRateableValue > 0

Yes

HistoricalView.MeteringProgramme

No

No

HistoricalViewRateableValue > 0

Yes

HistoricalViewRateableValue > 0

No

Yes

Fulfills URs 5.2

Return true

Return false

Return true

No

Yes

Return true

Return false

No

Yes

Return true

Return false

No

Return true

Return false

No

Yes

Return true

Return false

_1401196466.vsd
Add a comment

Call MakeTradeable (SupplyPoint) – USE WS
(see Tradeability Test R3.3)

_1401196470.vsd
Add a comment

�

Heading�

�

CheckSPIDNotPairedSewerage

SPIDPairedSewerage

validateCustomerName

Paired

True

False

Not Paired

Load a Sewerage SP using the T032 SPID

_1401196472.vsd
Add a comment

SSConnectionCompleteWF
IsSewerageSpid

Start

T007.0, T007.1 Notify Connection Complete (WS)
(ConnectionCompleteLogic.cs)

_1401196474.vsd
Add a comment

Send T009.1 Notification To Wholesaler (GW)
Supply Point must be pre-Tradeable

Start

Send T009.1 Notification To Wholesaler (GZ)
Sewerage Supply Point is not (potentially)
chargeable on given connection date

Send T009.1 Notification To Wholesaler (GZ)
Sewerage Supply Point is not (potentially)
chargeable on given connection date

SPID.IsPreTradeable

Is SPID Water

SPID.IsPotentiallyChargeable

Send T009.1 Notification To Wholesaler (GX)
Connect the sewerage Supply Point via the water SP,
as the water is pre-Tradeable

Send T009.1 Notification To Wholesaler (GY)
Water Supply Point is not (potentially)
chargeable on given connection date

NO

YES

SPID.associatedSPID != null

NO

Accept Message and Update Supply Point
(See UpdateSupply)

_1401196475.vsd
Add a comment

Finish

Fulfills URs 4.4, 6.1, 6.2, 6.3, 6.4

Loop Through Service Elements, For each of the Trade Effluent Elements:
	Update the Effective From Date To 	The D2013 Connection Date

NO

NO

(sp IsWater AND associatedSPID != null AND AssociatedSPID.IsPreTradeable)

_1401196473.vsd
Add a comment

SP has Active Registration AND
Active Registration LP is Not Sender

SP has Associated Supply Point(WS)
AND AssociatedSPID.isPreTradeable

No

Call ConnectionCompleteLogic –
AcceptConnectionMessages

_1401196471.vsd
Add a comment

�

Heading�

�

UpdateCustomerName

Load the Water SP or the Sewerage SP based on the T032 SPID

_1401196468.vsd
Add a comment

T006.1 UpdateSPID

Fulfills URs 4.5, 2.6, 2.7, 2.8

Start

Load SPID

Update 1980 SPI Record

If Customer Classification was supplied in the T006.1 message then set the new SupplyPointInfo Customer Classification to that value

If RV was supplied in the T006.1 message then set the new SupplyPointInfo RV to that value.

If SIC Code was supplied in the T006.1 message then set the new SupplyPointInfo Sic Code to that value

Check the updateStatus of the SPID. If it is ‘New’ then set the update status to ‘SpidDataOnly’.
If it is ‘SeDataOnly’ then set the updateStatus to ‘Both’. Otherwise leave the updateStatus as is.

Save SPID

_1401196469.vsd
Add a comment

�

Heading�

�

Start

T032.0 Message Processing – High Level Overview
CustomerNamesWF
CustomerNamesLogic

_1401196467.vsd
Add a comment

LPSewerageSpidUpdateWF

_1401196461.vsd
Start

Send T009.0 Notification (AB)

D2001_spid ! = null

No

PartialRegistrationLogic.CheckSPIDExists

Load Spid From Database

Send T009.0 Notification (AC)

Failure

Yes

Sp.Status = New

Success

Sp.Status = Tradeable

No

Send T009.0 Notification (AF)
(The SPID is already in status: Tradeable)

Yes

Send T009.0 Notification (AF)
(The SPID is not in the correct state for a partial Registration Application, MID)

No

CheckSPIDExists returns True

YES

_1401196463.vsd
Add a comment

Load Spid From Database

Set Sp.Status =Partial

Success

Load LicenceProvider from Database

Load Registration from Database

Success

Log Error
Throw Exception

Failure

Failure

Create New registration
Set sp.ActiveRegistration = registration

Failure

Success

Send T009.0 Notification (OK)

Finish

Fulfils URs 4.5, 4.5.3

SPID.IsSewerage
AND
(associatedSPID != null AND
associatedSPID.isPreTradeable)

Yes

Call MakeTradeable (SupplyPoint)
(see Tradeability Test R3.3)

_1401196464.vsd
Add a comment

Start

LPWaterSpidUpdateWF

_1401196462.vsd
PartialRegistrationLogic.CheckValidLP

Load Spid From Database

Send T009.0 Notification (AA)

Failure

Sp.Status == New Or Partial

Sp.ActiveRegistartion. LP == D1005_SenderOrgId

Yes

Success

Sp.ActiveRegistration != null

No

Sp.ActiveRegistartion. LP == D1005_SenderOrgId

Yes

Sp.Lp ==D1005_SenderOrgId

Sp.Lp !=Null

No

Yes

Yes

Sp.Lp ==D1005_SenderOrgId

No

Yes

No

Send T009.0 Notification (AA)

No

Yes

Yes

CheckSPIDExists
IS True

CheckValidLP returns True

_1401196459.vsd
Add a comment

CanMakeTradeable (SupplyPoint sp) [MakeTradeableHelper.cs]
(Previously CanConnect)

Start

SPID Has ConnectionDate
AND
isChargeable
AND
SPID.Status is PARTIAL

NO

YES

Success

Failure

Fulfills URs: 4.1, 4.3, 4.5

Return TRUE

_1401196460.vsd
Add a comment

MakeTradeable (SupplyPoint sp) [MakeTradeableHelper.cs]
(previously ConnectSPID)

_1401196458.vsd
Start

SetHistoricViewDate = connDate

ContainsRateableValueSE(connDate)

RateableValue > 0

Yes

ContainsNonMeteredSE(connDate)

HistoricalView.MeteringProgramme

Yes

RateableValue > 0

Yes

No

AssociatedSupplyPoint != null && AsscociatedSupplyPoint.Service = WaterService

No

ContainsMeteredSE(connDate)

HistoricalView.MeteringProgramme

Yes

Yes

RateableValue > 0

No

Yes

HistoricalView.MeteringProgramme

No

No

SewerageSupplyPoint.IsChargeable(DateTime? connDate)

Fulfills URs 5.2

No

Yes

Return true

Return false

No

Yes

Return true

Return false

No

Yes

Return true

Return false

Return true

RateableValue > 0

No

Yes

No

Yes

Return true

Return false

Return true

No

_1401196453.vsd
MakeTradeableHelper

(1) A New Static Class MakeTradeableHelper
The current ConnectionCompleteLogic.CanConnect method is moved to this class and renamed to the static Method bool CanMakeTradeable

(2) The current ConnectionCompleteLogic.ConnectSpid method is moved to this class and renamed to the static Method bool MakeTradeable

(3) ConnectionCompleteLogic.HasAssociatedSewerage is moved to this class and renamed to the static Method bool HasAssociatedNonTradeableSewerage

(4) ConnectionCompleteLogic.HasAssociatedWater is moved to this class and renamed to the static Method bool HasAssociatedNonTradeableWater

SupplyPoint.IsPreTradeable
A New Property of SupplyPoint

SPID.status == New ||SPID.status == Partial ||SPID.status == Rejected

--

IsChargeable remains the same as per existing.
IsPotentiallyChargeable Is Created which is the same as the current IsChargeable without The RV Check.
(See Chargeability Test Tab for more details)

_1401196455.vsd
WaterSupplyPoint.IsPotentiallyChargeable(DateTime? connDate)

Start

ContainsNonMeteredSE(connDate)

SetHistoricViewDate = connDate

ContainsRateableValueSE(connDate)

Yes

No

Yes

ContainsMeteredSE(connDate)

No

Yes

HistoricalView.MeteringProgramme

No

No

Yes

Fulfills URs 5.2

Return true

Return true

Return true

Return false

Return true

_1401196456.vsd
Start

SetHistoricViewDate = connDate

ContainsRateableValueSE(connDate)

Yes

ContainsNonMeteredSE(connDate)

Yes

No

AssociatedSupplyPoint != null && AsscociatedSupplyPoint.Service = WaterService

No

ContainsMeteredSE(connDate)

Yes

Yes

_1401196454.vsd
Add a comment

As you add text, the rectangle's height increases. Vary the width by stretching a side.

�

�

IsPotentiallyChargable
(New)

IsChargeable

_1401196451.vsd
�

Heading�

�

Start

SenderIsValidLP

_1401196452.vsd
Add a comment

�

Heading�

�

Call UpdateServiceElement

_1401196450.vsd
Add a comment

�

Heading�

�

ValidateData

_1401196449.doc
[image: image1.png]

